• Title/Summary/Keyword: Driver Assistance

Search Result 228, Processing Time 0.023 seconds

Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance (측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발)

  • Lee, Junyung;Kim, Dongwook;Yi, Kyongsu;Yoo, Hyunjae;Chong, Hyokjin;Ko, Bongchul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

Study on Effectiveness of Accident Reduction Depending on Autonomous Emergency Braking System (AEB 장치에 대한 사고경감 효과 연구)

  • Choi, JunYoung;Kang, SeungSu;Park, EunAh;Lee, KangWon;Lee, SiHun;Cho, SooKang;Kwon, YoungGil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.6-10
    • /
    • 2019
  • This paper describes effectiveness of accident reduction on vehicles equipped with AEB using accident data occurring in Korea. During the statistical period, we used the number of vehicles which are covered by auto insurance and the number of accidents. To maximize the reduction effect of accidents caused by the driver's carelessness, the analysis was limited to Physical Damage Coverage that covers the cost of repairing or replacing the damaged vehicle caused by the driver's fault. Due to Personal Information Protection Law, it was not capable of comparing the same vehicle using Vehicle Identification Number in this study. Instead of that, we used it as a similar vehicle, so there are limits to the comparison and analysis results. As a result of this study, we have found that the effect of reducing accidents was different depending on the vehicle class, but it was generally concluded that the number of accidents decreased when the vehicle was equipped with an AEB system. Domestic research on the AEB effect of reducing accidents is not active yet. Therefore, it is absolutely essential to analyze the effects according to various conditions such as driver's age, occupation and gender as well as expanding the study models in the future.

YOLO Driving Assistance System Using Model Car (모형차를 이용한 YOLO 주행 보조 시스템)

  • Kim, Jea-gyun;Heo, Hoon;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.671-674
    • /
    • 2018
  • In this study, we implement a YOLO driving assistance system using a model car. The YOLO is an object detection and recognition algorithm using deep running which is becoming an issue recently. The system alerts the lane departure by applying the image processing technology to the image acquired through the camera, recognizes the objects using the YOLO, and performs various functions according to the type of the object and the distance between the vehicle. the YOLO, which is superior to the existing object detection and recognition algorithm, improves the performance of the driving assist system without additional equipment. The driving assist system using the YOLO will ensure the safety of the driver with low cost.

  • PDF

Ubiquitous Marine Structure Inspection System based on Mixed Reality (해양구조물을 위한 유비쿼터스 기반의 혼합현실 유지보수 지원 시스템)

  • Lee, Kyung-Ho;Lee, Jung-Min;Kim, Dong-Guen;Han, Young-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.571-578
    • /
    • 2008
  • Ubiquitous has spotlighted in the industry in these days, and automotive industry has tried to build ubiquitous environment like as 'intelligent driver assistance system' in BMW Inc. even though in shipbuilding industry. As the part of Ubiquitous Technology for visualization, Mixed Reality has been adopted in this paper. Augmented reality, a part of mixed reality, could show the mixed real world, overlapping virtual objects. Therefore, it is more realistic than virtual reality that all generated by computer and it is very useful for displaying information. For this reason, we tried to apply augmented reality to inspect marine structure and we developed the inspection assistance system based on mixed reality

Research on Cognitive Effects and Responsiveness of Smartphone-based Augmented Reality Navigation (스마트폰 증강현실 내비게이션의 인지능력과 호응도에 관한 연구)

  • Sohn, Min Gook;Lee, Seung Tae;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.272-280
    • /
    • 2014
  • Most of the car navigation systems pzrovide 2D or 3D virtual map-based driving guidance. One of the important issues is how to reduce cognitive burden to the driver who should interpret the abstracted information to real world driving information. Recently, an augmented reality (AR)-based navigation is considered as a new way to reduce cognitive workload by superimposing guidance information into the real world scene captured by the camera. In particular, head-up display (HUD) is popular to implement AR navigation. However, HUD is too expensive to be set up in most cars so that the HUD-based AR navigation is currently unrealistic for navigational assistance. Meanwhile, smartphones with advanced computing capability and various sensors are popularized and also provide navigational assistance. This paper presents a research on cognitive effect and responsiveness of an AR navigation by a comparative study with a conventional virtual map-based navigation on the same smartphone. This paper experimented both quantitative and qualitative studies to compare cognitive workload and responsiveness, respectively. The number of eye gazing at the navigation system is used to measure the cognitive effect. In addition, questionnaires are used for qualitative analysis of the responsiveness.

A Study on Sled Test Method for Evaluating Autonomous Vehicle Crash Safety (자율주행자동차 충돌안전성 평가를 위한 Sled 기반 시험방법에 대한 고찰)

  • Hoyeol Lee;Jeongmin In;Hyungjin Chang;Myungsu Lee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.3
    • /
    • pp.55-63
    • /
    • 2024
  • As autonomous driving performance, such as automatic emergency braking (AEB) and advanced driver assistance systems (ADAS), continues to improve, collision angles and occupant seating postures become more diverse, and there is a need to study how occupant injury mechanisms change depending on the type of collision. Accordingly, a representative crash test mode was derived. Using the derived crash test mode, we analyzed the crash injury mechanism according to the impact angle and the occupant's seating posture (seat back angle). Sled is a crash simulation test that applies a pulse corresponding to the vehicle body acceleration pulse generated during a collision. Sled testing has advantages in terms of cost and time compared to actual vehicle crash testing. We focus on the correlation between crash tests reflecting autonomous vehicle crash modes and Sled tests. The results obtained through this study can be used to develop new crash evaluation methods. As a result, we will present the results of an experimental study on the actual vehicle crash test Sled test method.

Spatiotemporal Traffic Density Estimation Based on Low Frequency ADAS Probe Data on Freeway (표본 ADAS 차두거리 기반 연속류 시공간적 교통밀도 추정)

  • Lim, Donghyun;Ko, Eunjeong;Seo, Younghoon;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.208-221
    • /
    • 2020
  • The objective of this study is to estimate and analyze the traffic density of continuous flow using the trajectory of individual vehicles and the headway of sample probe vehicles-front vehicles obtained from ADAS (Advanced Driver Assitance System) installed in sample probe vehicles. In the past, traffic density of continuous traffic flow was mainly estimated by processing data such as traffic volume, speed, and share collected from Vehicle Detection System, or by counting the number of vehicles directly using video information such as CCTV. This method showed the limitation of spatial limitations in estimating traffic density, and low reliability of estimation in the event of traffic congestion. To overcome the limitations of prior research, In this study, individual vehicle trajectory data and vehicle headway information collected from ADAS are used to detect the space on the road and to estimate the spatiotemporal traffic density using the Generalized Density formula. As a result, an analysis of the accuracy of the traffic density estimates according to the sampling rate of ADAS vehicles showed that the expected sampling rate of 30% was approximately 90% consistent with the actual traffic density. This study contribute to efficient traffic operation management by estimating reliable traffic density in road situations where ADAS and autonomous vehicles are mixed.

Filtering-Based Method and Hardware Architecture for Drivable Area Detection in Road Environment Including Vegetation (초목을 포함한 도로 환경에서 주행 가능 영역 검출을 위한 필터링 기반 방법 및 하드웨어 구조)

  • Kim, Younghyeon;Ha, Jiseok;Choi, Cheol-Ho;Moon, Byungin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Drivable area detection, one of the main functions of advanced driver assistance systems, means detecting an area where a vehicle can safely drive. The drivable area detection is closely related to the safety of the driver and it requires high accuracy with real-time operation. To satisfy these conditions, V-disparity-based method is widely used to detect a drivable area by calculating the road disparity value in each row of an image. However, the V-disparity-based method can falsely detect a non-road area as a road when the disparity value is not accurate or the disparity value of the object is equal to the disparity value of the road. In a road environment including vegetation, such as a highway and a country road, the vegetation area may be falsely detected as the drivable area because the disparity characteristics of the vegetation are similar to those of the road. Therefore, this paper proposes a drivable area detection method and hardware architecture with a high accuracy in road environments including vegetation areas by reducing the number of false detections caused by V-disparity characteristic. When 289 images provided by KITTI road dataset are used to evaluate the road detection performance of the proposed method, it shows an accuracy of 90.12% and a recall of 97.96%. In addition, when the proposed hardware architecture is implemented on the FPGA platform, it uses 8925 slice registers and 7066 slice LUTs.

Advanced Channel Estimation Schemes Using CDP based Updated Matrix for IEEE802.11p/WAVE Systems

  • Park, Choeun;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • Today, cars have developed into intelligent automobiles that combine advanced control equipment and IT technology to provide driving assistance and convenience to users. These vehicles provide infotainment services to the driver, but this does not improve the safety of the driver. Accordingly, V2X communication, which forms a network between a vehicle and a vehicle, between a vehicle and an infrastructure, or between a vehicle and a human, is drawing attention. Therefore, various techniques for improving channel estimation performance without changing the IEEE 802.11p standard have been proposed, but they do not satisfy the packet error rate (PER) performance required by the C-ITS service. In this paper, we analyze existing channel estimation techniques and propose a new channel estimation scheme that achieves better performance than existing techniques. It does this by applying the updated matrix for the data pilot symbol to the construct data pilot (CDP) channel estimation scheme and by further performing the interpolation process in the frequency domain. Finally, through simulations based on the IEEE 802.11p standard, we confirmed the performance of the existing channel estimation schemes and the proposed channel estimation scheme by coded PER.

Front and Rear Vehicle Monitoring System using Ultrasonic Sensors (초음파 센서를 이용한 차량 전·후방 감시 시스템)

  • Choi, Hun;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1125-1132
    • /
    • 2012
  • The researches on driver assistance systems that can prevent an accident have been actively performed due to social issues of traffic accidents with development of vehicle industry in recent. It is required for researchers to develope systems which assist driver's perception and judgment when considering that over 70% of traffic accidents occur by drivers' carelessness and 75% of the total accidents occur at the speed of less 29km per hour. In this paper, we implemented a front and rear vehicle monitoring system that monitors distance from a vehicle to obstacles in real-time at the low-speed or back-ward driving. The proposed system consists of ultrasonic sensors of high angle and wide angle of beam spread, ATmega128, and DSP processor.