• 제목/요약/키워드: Drive-Train

검색결과 207건 처리시간 0.026초

철도차량 윈도와이퍼 우적 System 적용 검토 고찰 (Railway Car Window wiper System Application Investigation)

  • 고영호;이기수;차관봉;이석형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.755-760
    • /
    • 2007
  • The research will be essential that the method for strengthening safety are safe installations in a hardware portion, a safe running ceremony of the vehicle employee (an engine driver) and the estimate of the situation which is accurate. In railway car the window wiper which is auxiliary equipment for safe operation is changed the existing manual control method with automatic correspondence precipitation used raindrops censor which can assure the vision of driving. It can be easy to safe driving as might have expected the object. We carried out studies technical review investigation which can accomplish the best suited wiping speed in maintaining an introduction existing system in the manual control system applied the existing train and corresponding to precipitation. The observation fact in the studies can be possible to ensure safety operation. That is, Manual operation method (of the driver) to add the automatic speed adjust function can operate improved window wiper drive system when it rains and, as was expected, it is able to ensure the range of a good railroad driver's vision and to concentrate in working at rainfall.

  • PDF

구동방식에 따른 승용차 엔진룸 화재조사 기법에 관한 사례 연구 (A Case Study on the Investigation of Vehicle Fire According to Drive Train)

  • 손정배;권현석;이정일;최돈묵
    • 한국화재조사학회논문지
    • /
    • 제11권1호
    • /
    • pp.83-88
    • /
    • 2008
  • 차량화재의 발화지점은 크게 엔진룸과 승객실로 볼 수 있다. 엔진룸에서 발생된 차량화재의 경우 방화벽이 엔진룸과 승객실 사이에 설치되어 있으므로 승객실로 전이는 약 10~15분 정도로 지연되는 것이 일반적이다. 엔진룸은 그 차량의 구동 방식에 따라 종치형과 횡치형으로 배열되는데 이들 엔진 배열에 따라 화염이 전이되는 과정이 각각 다르게 나타나고 좌우 대시 패널에 나타난 소손정도 또한 다르게 나타난다. 따라서 엔진룸에서 발생된 차량 화재 감식시 좌우 대시패널의 소손정도를 먼저 파악하는 것이 발화지점을 빠르게 찾는 방법인 것으로 사료된다.

  • PDF

스로틀 전자제어 방식 M/T차량의 가/감속 시 운전성 향상에 관한 연구 (A Study of the Driveability Improvement on the Electronic Throttle Control M/T Vehicle at Tip-in/out)

  • 박경석;이종화;박진일
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.151-157
    • /
    • 2006
  • The passenger car drivers want in general to feel good driveability, but they sometimes feel uncomfortable by shock and jerk phenomena when they push or release acceleration pedal with clutch on state. In this paper, the shock and jerk characteristics are studied on the vehicles controlled by the throttle-by-wire system. Experiments and simulations were carried out on two vehicles which show different control characteristics. The engine torque control characteristics was analyzed by measuring cylinder pressure. Various specification factors of the vehicles and the torque control logic of the engines were simulated through experimental data basis. The result shows the spring effect of the trans-axle in the drive-train is one of the most important factors of the shock-jerk phenomena and the engine torque control method is also responsible for the reducing the shock-jerk amplitude. In this paper a new control logic of the engine torque is suggested for the better driveablility on the tip-in/out event.

3MW 풍력발전기 진동상태감시 및 진단시스템 프레임워크 (Vibration Monitoring and Diagnosis System Framework for 3MW Wind Turbine)

  • 손종덕;엄승만;김성태;이기학;이정훈
    • 한국소음진동공학회논문집
    • /
    • 제25권8호
    • /
    • pp.553-558
    • /
    • 2015
  • This paper aims at making a dedicated vibration monitoring and diagnosis framework for 3MW WTG(wind turbine generator). Within the scope of the research, vibration data of WTG drive train are used and WTG operating conditions are involved for dividing the vibration data class which included transient and steady state vibration signals. We separate two health detections which are CHD(continuous health detection) and EHD(event health detection). CHD has function of early detection and continuous monitoring. EHD makes the use of finding vibration values of fault components effectively by spectrum matrix subsystem. We proposed framework and showed application for 3MW WTG in a practical point of view.

연료전지 하이브리드 자동차의 동력전달계의 용량 선정 (Sizing of Powertrain in Fuel Cell Hybrid Vehicles)

  • 정춘화;신창우;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.113-118
    • /
    • 2011
  • Fuel Cell Hybrid Vehicle (FCHV) is one of the most promising candidates for the next generation of transportation. It has many outstanding advantages such as higher energy efficiency and much lower emissions than internal combustion engine vehicles. It also has the ability of recovering braking energy. In order to design an FCHV drive train, we need to determine the size of the electric motor, the Fuel Cell System (FCS), and the battery. In this paper, the methodology for the sizing of these components is introduced based on the driveability constraints of the FCHV. A power management strategy is also presented because the battery energy capacity depends on it. The warm-up time of the FCS is also considered in the power management strategy and the simulation result is compared to that without considering the warm-up time.

자석식 무한궤도를 가진 모노레일의 동역학 해석 (Dynamic Analysis of Monorail System with Magnetic Caterpillar)

  • 원종성;탁태오
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

FRT차량의 사용자중심적인 실내디자인 연구 (Research of the user oriented interior design for FRT)

  • 김상중;김성남
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.455-460
    • /
    • 2004
  • The Fuel cell Rubber tired Train (FRT), which is now getting the attention as the next generation vehicle with its environment-friendliness, is the transportation for smooth connections of city traffic. It is the revival of the surface-car system with its revaluation of the function and technological development. Accordingly, fixed time operation and high speed driving became possible. FRT is operated together with other vehicles on the regular drive way. While this vehicle can solve the problem of traffic congestion in the urban area, it also can be cost-effective when it is compared to the cost of subway construction. It is also designed to minimize the underground or elevated traffic lane, to introduce the new construction technology, to reduce a term of works, and to cut down the operation cost by unmanned automatic driving system. Furthermore, it is considered as the alternative measure of other transportation due to its potential for the ecological way of speed improvement and the accessability to the disabled, elderly and children by developing the vehicle with folding steps or by building the high boarding platforms. In this research, I concentrated on the user oriented interior design of the FRT to make it passenger-friendly and safe in order to maximize the utilization of the vehicle so that all users including wheelchaired, user with baby carriage, elderly and children can conveniently use this vehicle.

  • PDF

신경회로망을 이용한 직류전동기의 센서리스 속도제어 (Sensorless Speed Control of Direct Current Motor by Neural Network)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

고속 무한궤도 차량용 변속기 시뮬레이터 개발 (Development of Transmission Simulator for High-Speed Tracked Vehicles)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.29-36
    • /
    • 2017
  • Electronic control technologies that have long been developed for passenger cars spread to construction equipment and agricultural vehicles because of its outstanding performance achieved by embedded software. Especially, system program of transmission control unit (TCU) plays a crucial role for the superb shift quality, driving performance and fuel efficiency, etc. Since the control algorithm is embedded in software that is rarely analyzed, development of such a TCU cannot be conducted by conventional reverse engineering. Transmission simulator is a kind of electronic device that simulates the electric signals including driver operation command and output of various sensors installed in transmission. Standalone TCU can be run in normal operation mode with the signals provided by transmission simulator. In this research, transmission simulator for the tracked vehicle TCU is developed for the analysis of shift control algorithm from the experiments with standalone TCU. It was confirmed that shift experimental data for the simulator setup conditions can be used for the analysis of control algorithms on proportional solenoid valves and shift map.

Learning Model for Avoiding Drowsy Driving with MoveNet and Dense Neural Network

  • Jinmo Yang;Janghwan Kim;R. Young Chul Kim;Kidu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권4호
    • /
    • pp.142-148
    • /
    • 2023
  • In Modern days, Self-driving for modern people is an absolute necessity for transportation and many other reasons. Additionally, after the outbreak of COVID-19, driving by oneself is preferred over other means of transportation for the prevention of infection. However, due to the constant exposure to stressful situations and chronic fatigue one experiences from the work or the traffic to and from it, modern drivers often drive under drowsiness which can lead to serious accidents and fatality. To address this problem, we propose a drowsy driving prevention learning model which detects a driver's state of drowsiness. Furthermore, a method to sound a warning message after drowsiness detection is also presented. This is to use MoveNet to quickly and accurately extract the keypoints of the body of the driver and Dense Neural Network(DNN) to train on real-time driving behaviors, which then immediately warns if an abnormal drowsy posture is detected. With this method, we expect reduction in traffic accident and enhancement in overall traffic safety.