• Title/Summary/Keyword: Drive gear

Search Result 255, Processing Time 0.026 seconds

Reliability Evaluation of Multi-Stage Gear Drive (다단 기어장치의 신뢰성 평가에 관한 연구)

  • Chong Tae-Hyong;Kim Young-Ju;Park Seung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • Recently the design of multi-stage gear drive is being highly concerned. Until now, since the researches of gear drive are focused on the design for satisfying safety factor, the reliability evaluation of multi-stage gear drive is not included. In this paper, the life and reliability models of multi-stage gear drive are proposed using methods of probability and statistics. The life and reliability of the multi-stage gear drive have been evaluated, which is based on the life and reliability of each stage gear drive. The pinion and gear lives of each stage are calculated using the Lundberg-Palmgren theory and the Weibull failure distribution. These lives are combined using methods of probability and statistics to produce a life and reliability model of multi-stage gear drive.

A study on the Analysis of Drive Efficiency by Drawbar Pull Test in the Wheeled Vehicle (경인력시험을 통한 차륜차량의 구동효율에 관한 연구)

  • 양성모;강윤수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.34-46
    • /
    • 1987
  • The drive efficiency is investigated with drawbar pull test to provide the basic data in the gradability and acceleration of the wheeled vehicle. As a result, the drive efficiencies are determined from 4*2 drive : Direct gear 0.89 1st gear 0.81 Other gears 0.83-0.87 4*4 high drive : Direct gear 0.85 1st gear 0.77 Other gears 0.79-0.83 4*4 low drive : Direct gear 0.83 1st gear 0.75 Other gears 0.77-0.81

  • PDF

Design Method for Multi-Stage Gear Drive (다단 치차장치의 설계법)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.470-475
    • /
    • 1999
  • Recently as the application of gear drive increases in high-speed and high-loading, the concern of designing multi-stage gear drive is being risen. Until now however, the research of gear drive is focused on single-stage gear drive and the design depends on experiences and know-how of designer and is carried out by trial and error. This research automated the basic design and the configuration design for two and three-stage gear drives which consist of cylindrical gears. In basic design, design is executed with two design processes, which minimize the overall volume of gear, and whose results are compared each other. In configuration design, the positions of gears are determined to minimize the volume of gearbox using the result of basic design and simulated annealing algorithm.

  • PDF

Nonlinear Analysis of Gear Drive System due to Misalignment (정렬불량에 의한 기어 구동계 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.31-36
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear drive system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. The equation of motion of the gear drive system is modelled using the time-varying gear meshing stiffness, bearing nonlinear stiffness, and bearing pre-load due to the housing deformation. Numerical analysis lot the gear drive system show the result of misalignment effect - sub-harmonic component, bearing pre-load effect, and another nonlinear phenomenon. And the numerical analysis are verified by the experimental result.

  • PDF

Development of the Tolerance Design System for a Gear Drive (치차 장치를 위한 공차 설계 시스템 개발)

  • 정태형;정진욱
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2713-2722
    • /
    • 2000
  • When designing a gear drive, designers should specify tolerances reasonably considering accuracy, cost, and manufacturing capability. In field design, however, designers mostly assign adequate tolerance without correlations between parts and assembly, resulting in iterative design dependent on experts know-how. In order to resolve this, the tolerance design system for a cylindrical gear drive is developed both to support tolerance design automation and to synthesize design processes of part and assembly tolerances. In this research, part tolerances are designed with the databases constructed by ISO, Ks, JIS and bearing catalogue, Assemble tolerance, that is, backlash tolerance is designed by synthesizing part design tolerances stochastically using the formulated assembly relations. This system can include part tolerance and fitting accuracy of shaft adn bearing in practical design. In addition, this system provides field-designers with a synthetic guideline for tolerance design of a gear drive.

Structured Representation of Design Information for Gear Drives in XML (XML을 이용한 기어장치 설계정보의 구조적 표현)

  • 정태형;안준영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.392-397
    • /
    • 2000
  • A methodology is proposed to share the design information of a gear drive using XML (eXtensible Markup Language). XML is the standard language of the next generation and can be used as a neutral and unique format shared by various Web applications. Since XML is a platform-independent meta-markup language, it is possible to reduce the additional programming efforts for Web applications by using the standardization of technical terminologies. In this study, the structure of design information about gears, shafts, keys and bearings in a gear drive has been made and the terminologies used in the gear drive design process have been authored. The XML DTD(Data Type Definition) for the gear drive design has been declared and the usage of the XML application has been shown.

  • PDF

A Study on Mass Reduction of Planetary Gear in Pitch Drive of Medium-sized Wind Turbine (중형 풍력발전기 피치 드라이브의 유성기어 경량화에 관한 연구)

  • Park, Seong-Gyu;Shin, Yoo-In;Kim, Dong-Myoung;Song, Chul-Ki
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.5-10
    • /
    • 2017
  • Pitch drive system in wind turbine is composed by the planetary gear system to satisfied its required performance such as long life and light weight for gear train. When the planetary gear system can reduce its volume and weight, the power consumption of the wind turbine can be reduced. In this study, the planetary gear system of the pitch drive system in medium-sized wind turbine is obtained for weight reduction by shape optimization method. And the planetary gear system is verified for their strength by the structural analysis.

Tooth Modification for Spur Gear for Articulated Hauler's Final Drive (트럭 최종감속기 평기어의 치형최적화에 관한 연구)

  • Oh, Sew-Oong;Zhang, Qi;Lee, In-Bum;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.42-47
    • /
    • 2012
  • Construction equipment is heavily loaded during normal operation. In recent years, there is a trend that lower gear noise levels are demanded for drivers to avoid annoyance and fatigue during operation. For articulated hauler's final drive, meshing transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of the tooth profile modification, and the prediction of transmission error under the loaded torques for the spur gear pair of the articulated hauler's final drive. And the transmission error, transmission error harmonics and contact stress are also calculated and compared before and after tooth modification under one torque. The simulation result shows that the transmission error and contact stress under the loads can be minimized by the appropriate tooth profile modification.

Simulation of Meshing for the Spur Gear Drive with Modified Tooth Surfaces

  • Seol, In-Hwan;Chung, Soon-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.490-498
    • /
    • 2000
  • The authors have proposed methods (lead crowning and profile modification) for modifying the geometry of spur gears and investigated the contact pattern as well as the transmission errors to recommend the appropriate amount of modification. Based on the investigation, dynamic load of the modified spur gear drive has been calculated, which is helpful to predict the life of the designed gear drive. Computer programs for simulation of meshing, contact and dynamics of the modified spur gears have been developed. The developed theory is illustrated with numerical examples.

  • PDF

Fatigue Strength Analysis of Complex Planetary Gear Train of the Pitch Drive System for Wind Turbines (풍력발전용 피치 드라이브 시스템의 복합 유성기어류에 대한 피로 강도해석)

  • Kim, KwangMin;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.48-53
    • /
    • 2021
  • Wind energy is considered as the most competitive energy source in terms of power generation cost and efficiency. The power train of the pitch drive for a wind turbine uses a 3-stage complex planetary gear system in being developed locally. A gear train of the pitch drive consists of an electric or hydraulic motor and a planetary decelerator, which optimizes the pitch angle of the blade for wind generators in response to the change in wind speed. However, it is prone to many problems, such as excessive repair costs in case of failure. Complex planetary gears are very important parts of a pitch drive system because of strength problem. When gears are designed for the power train of a pitch drive, it is necessary to analyze the fatigue strength of gears. While calculating the specifications of the complex planetary gears along with the bending and compressive stresses of the gears, it is necessary to analyze the fatigue strength of gears to obtain an optimal design of the complex planetary gears in terms of cost and reliability. In this study, the specifications of planetary gears are calculated using a self-developed gear design program. The actual gear bending and compressive stresses of the planetary gear system were analyzed using the Lewes and Hertz equation. Additionally, the calculated specifications of the complex planetary gears were verified by evaluating the results from the Stress - No. of cycles curves of gears.