• Title/Summary/Keyword: Drive Shaft

Search Result 246, Processing Time 0.024 seconds

Investigation of Structural Safety of Monobloc Tubular Drive Shaft Subjected to Torque (비틀림 모멘트가 부가되는 일체형 중공 드라이브 샤프트의 구조 안정성 분석)

  • Guk, Dae-Sun;Ahn, Dong-Gyu;Lee, Ho-Jin;Jung, Jong-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1073-1080
    • /
    • 2015
  • A drive shaft is used to transmit torque and rotation through the connection of components of a drive train. Recently, a monobloc drive shaft without welding regions is developed to improve the safety of the drive shaft. The drive shaft bears the shear stress induced by torque. The objective of this paper is to investigate into the structural safety of a monobloc tubular drive shaft subjected to torque. Elasto-plastic finite element (FE) analysis is performed to estimate the deformation behavior of the drive shaft and stress-strain distribution in the drive shaft. Several techniques are used to create finite element (FE) model of the monobloc tubular drive shaft subjected to torque. Through the comparison of the results of FE analyses with those of experiments from the viewpoint of rotational angle, appropriate correction coefficients for different load conditions are estimated. The safety of the tubular drive shaft is examined using the results of FE analyses for different load conditions. Finally, it is noted that the designed tubular drive shaft has a sufficient structural safety.

Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles (자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰)

  • Lee, Il Kwon;Moon, Hak Hoon;Youm, Kwang Wook
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.

A Study on the Rotary Swaging Machine and Process Development of Automotive Tubular Drive Shaft (자동차용 중공 구동축 성형장치 개발 및 성형공정에 관한 연구)

  • 오태원;유택인;현동훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.344-350
    • /
    • 2003
  • This Paper deals with the weight-lowering and the traits of NVH(Noise, Vibration and Harshness) by the development of tubular shaft replacing the existing solid Drive Shaft for the lighter and less-noisy automobiles. By the review of Swaging Process this study reveals the various forming traits of Swaging, one of the forming methods for tubular shafts. Furthermore, it showed the possibility of Drive Shaft manufacturing through designing & manufacturing of Swaging machine for tubular shaft, and the production ar analysis of the tubular shaft with the relevant process and tools. This study also shows that the forming by swaging not only makes the mass production of tubular Drive Shaft possible but also may be widely applied to other products with many advantages in review of dimensional precision, thickness change, hardness increase and surface roughness of the swaged products.

  • PDF

Design and Manufacturing of Composite Drive Shaft for Automobiles (자동차용 복합재료 드라이브샤프트 설계 및 성형 연구)

  • Kim, T.W.;Lee, S.K;Jun, E.J.;Kim, W.D.;Lee, D.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.109-117
    • /
    • 1993
  • A carbon/epoxy composite drive shaft used for the power transmission of the automobiles with steel joints. Compared with the metallic drive shaft, the composite one has the weight saving of 50% with equivalent torsional strength and fatigue characteristics. In this study, the filament winding technique for the composite tube and composite/metal joining technique are estabilished. The performance test of the drive shaft is carried out. The optimal condition of the surface roughness of the steel adherend was $1.5{{\mu}m}$ to $2.5{{\mu}m}$, and the optimal condition of the bonding thickness was 0.15mm. Maximum torque and torsional stiffness of the composite drive shaft manufactured by filament winding process were found to be $210kg{\cdot}m$ and $18.5kg{\cdot}m/deg$, respectively.

  • PDF

A Study on the Vibration Characteristic of Slip-In Tube Propeller Shaft in FR Automobile (후륜 구동 자동차의 슬립 인 튜브 프로펠러 샤프트의 진동특성에 관한 연구)

  • Lee, H.J.;Hwang, J.H.;Kim, S.S.;Byun, J.M.;Kim, E.Z.;Cha, D.J.;Kang, S.W.;Byun, W.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.309-313
    • /
    • 2006
  • Many researchers have studied on the lightness of automobile. These researches are such as a body shell, sub frame, fuel tank, engine etc. The transmission Part is a magnitude one in the aspect of weight. A drive shaft (propeller shaft) transmits the engine power to rear differential gear assembly. It is used in the compact car that is a single drive shaft. But in the case of long body cars such as SUV (Sports Utility Vehicle), truck and large vehicle, two or three divided drive shaft are used to prevent the vibration damage from a drive shaft that has been taken high torsion and rotation. This multi-divided drive shaft structure is so heavy because it is assembled by yoke, center bearing and solid spline axis. When the rear axle move up and down, the spline shaft adjust the variation of a length between the transmission and rear axle gearbox. In this paper, it is studied in the experimental method that is a bending vibration characteristic of slip in tube shaped propeller shaft. This type propeller shaft is developed to combine the spline axis with drive shaft and can be light in weight of transmission part.

  • PDF

Investigation of Stress Concentration and Fatigue Life of Axle Drive Shaft with Relief Groove (완화 홈이 가공된 액슬구동축의 응력집중 및 피로수명 평가)

  • Shin, Jae-Myung;Han, Seung-Ho;Han, Dong-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • An axle drive shaft with double joint shaft, cross kit and yoke has an important role by transferring power and changing steering angle between axle and wheel in power train system. It has been used widely in the heavy machinery requiring a high reliability in the power train system. At fatigue failures of the axle drive shaft with the long span, a relatively high stress concentration at a snap ring groove on the drive shaft brings to significant fatigue damages under repeated loading condition. As Peterson's suggestions on this study, a relief groove in the vicinity of the snap ring groove is applied by decreasing the stress concentration and improving the fatigue life of axle drive shaft. By using FEM analysis, the decreasing effect of the stress concentration and extended fatigue life are due to the change of design parameters related with size and location of the relief groove. The relief groove with the design parameters such as d/b=2.0 and r/h=1.2 enables to decrease the stress concentration of 22.3% and increase the fatigue life more than 3 times by comparing with no relief groove application.

Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft (일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측)

  • Lee, Ho-Jin;Guk, Dae-Sun;Ahn, Dong-Gyu;Jung, Jong-Hoon;Seol, Sang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

Development Technique of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior Caused by Drive Shaft (구동축과 연관된 차량의 부밍 소음 저감을 위한 중공축 개발 기법)

  • Ko, Kang-Ho;Choi, Hyun-Joon;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.187-193
    • /
    • 2000
  • In order to reduce the booming noise caused by first bending mode of drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of drive shaft and applying the boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model for a shaft attached in vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft can be proposed at the early stage of design.

  • PDF

Performance Characteristics of the Automotive TDS (Tube Drive Shaft) by the Rotary Swaging Process (로터리 스웨이징 공정으로 성형된 자동차 중공 드라이브샤프트의 성능특성 연구)

  • 임성주;이낙규;나경환;이지환
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.654-661
    • /
    • 2003
  • A monobloc TDS(Tube Drive Shaft) has been developed by using the rotary swaging process which is one of the incremental forming process. In order to estimate the developed TDS performance characteristics such as natural frequency, strength, stiffness and mass, finite element analysis has been carried out using commercial software, MSC/NASTRAN. The calculated performance characteristics have been compared with analysis results of SDS(Solid Drive Shaft) to know how much improve the performance characteristics. Also the sensitivity analyses of design parameters for the tube length and diameter have been performed. From the analysis results, it was found that the TDS allowed for a high frequency and could be designed to be much lighter than SDS. This advantage can give possibility to tune the NVH (Noise-Vibration-Harshness) characteristics.

Effects of internal damping on the bending vibration characteristics of composite drive shaft

  • Mo Yang;Haonan Hu;Xian Zhou;Wen Zhang;Yuebin Zhou;Yikun Wang;Jianmin Ye
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.663-672
    • /
    • 2024
  • This paper researched on the bending vibration characteristics of composite drive shaft with internal damping. To analyze the unbalanced excitation response in full speed range, a transfer matrix model was built based on the improved Layer-wise theory and the numerical damping, and compared with the metal drive shaft. The results show that the effect of internal damping of the composite shaft tube on bending vibration response was different in the subcritical, critical and supercritical speed ranges. Then, the finite element analysis and vibration tests were carried out to verify the analysis results of transfer matrix model.