• Title/Summary/Keyword: Drawbead Model

Search Result 15, Processing Time 0.017 seconds

Experimental Verification of Equivalent Drawbead Model and Application to Auto-Body Stamping Analysis (등가 드로비드 모델의 실험적 검증 및 차체 스탬핑 해석에 적용)

  • Moon, S.J.;Lee, J.Y.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.371-376
    • /
    • 2009
  • An equivalent drawbead model(EDM) for sheet metal forming analysis, which replaces complex drawbead geometries with drawbead forces in modeling the stamping dies with finite elements, is experimentally verified and applied to the numerical simulation of auto-panel stamping process. The drawbead restraining and opening forces of elliptical drawbead, circular drawbead, square drawbead, and step drawbead are obtained by performing the drawbead pulling test and compared with those of EDM and commercial code models(CCM). Better agreement with experimental measurements is found in EDM than CCM. Furthermore, the excellence of EDM is demonstrated in its application to the auto-body stamping analysis.

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes(Part 2:Modeling) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(2부: 모델링))

  • Keum, Yeong-Tak;Lee, Jae-U
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.12-22
    • /
    • 1998
  • An expert drawbead model is developed for the finite element analysis of stamping processes. The expert model calculates drawbead restraining forces and bead-exit thinnings with the forming condi-tions and drawbead size. The drawbead restraining forces and bead-exit thinnings of a circular draw-bead and stepped drawbead are computed by mathematical models and corrected by the multiple lin-ear regression method based on experimental measurements. The squared drawbead preventing the sheet from drawing-in inside die cavity is assumed to have a very huge drawbead restraining force and no pre-strain just after drawbead. The combined beads are considered as a combination of basic draw-beads such as circular a drawbead stepped drawbead and squared drawbead so that the drawbead restraining forces and bead-exit thinnigs are basically sum of those of basic drawbeads.

  • PDF

Study on the Drawbead Expert Models (드로우비드 전문모델에 관한 연구)

  • 김준환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.26-29
    • /
    • 2000
  • drawbead expert models are developed for calculating drawbead restraining force and drawbead-exit thinnings which are boundary conditions in FEM stamping simulation employing the linear multiple regression method by which the deviation of drawing characteristics between drawing test and mathematical model is minimized. In order to show the efficiency and accuracy of an expert drawbead model a finite element simulation of auto-body panel stamping is carried out. The finite element simulation shows that the expert drawbead model provides the accurate solution guarantees the stable convergence and the merit in the computation time.

  • PDF

Drawbead Model for 3-Dimensional Finite Element Analysis of Sheet Metal Forming Processess (3차원 박판형성 공정 유한요소해석용 드로우비드 모델)

  • 금영탁;김준환;차지혜
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.394-404
    • /
    • 2002
  • The drawbead model for a three-dimensional a finite element analysis of sheet metal forming processes is developed. The mathematical models of the basic drawbeads like circular drawbead, stepped drawbead, and squared drawbaed are first derived using the bending theory, belt-pulley equation, and Coulomb friction law. Next, the experiments for finding the drawing characteristics of the drawbead are performed. Based on mathematical models and drawing test results, expert models of basic drawbeads are then developed employing a linear multiple regression method. For the expert models of combined drawbeads such as the double circular drawbead, double stepped drawbead, circular-and-stepped drawbead, etc., those of the basic drawbeads are summed. Finally, in order to verify the expert models developed, the drawing characteristics calculated by the expert models of the double circular drawbead and circular-and-stepped drawbead are compared with those obtained from the experiments. The predictions by expert models agree well with the measurements by experiments.

Experimental Model for Determining Drawbead Forces (드로우비드력 결정을 위한 실험모델)

  • Moon, S.J.;Lee, M.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.217-219
    • /
    • 2008
  • A new experimental model for determining drawbead forces, which modifies the dieface of Nine's experimental model, is introduced and the better validity of the drawbead opening and restraining forces of new model than those of Nine's is demonstrated. While Nine's model considers a blank holding force as one of forming variables, new model excludes it by removing blank holder in the dieface. The comparison of the strains found by FEM simulation of automotive fender draw forming process with those measured in a formed panel recommends the new model for accurate drawbead forces.

  • PDF

Verification of Theoretical Model for Equivalent Drawbend (등가 드로우비드 이론 모델 검증)

  • Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.367-369
    • /
    • 2008
  • A theoretical model of equivalent drawbead for sheet metal forming analysis is experimentally verified in this paper. After the theoretical drawbead models improved a material description for the accurate calculation of drawbead forces are briefly introduced, they are verified by showing the good agreement of their drawbead forces with experimental measurements. Furthermore, the excellence of theoretical models is demonstrated by the comparison with those of commercial codes.

  • PDF

Application of Drawbead Expert Model to Finite Element Analysis of Forming Process for Auto-Body Panel (차체패널 성형공정 유한요소해석에 드로우비드 전문모델의 적용)

  • 금영탁;김준환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.119-129
    • /
    • 2000
  • In order to show the efficiency and accuracy of an expert drawbead model, finite element simulations of auto-body panel stampings are carried out. For numerical modeling of the drawbead of a panel die, the drawbead restraining force and bead-exit thinning calculated by the expert model are imposed to a node nearest to the drawbead position as a boundary condition, Finite element simulations show that the expert model provides the accurate solution, guarantees the stable convergence, and has the merit in the computation time.

  • PDF

Design of Drawbeads for Advanced High Strength Steel Sheet Forming (초고강도 강판 성형용 드로비드 설계)

  • Kim, B.G.;Jeong, J.Y.;Kim, D.J.;Kim, G.S.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.420-423
    • /
    • 2009
  • In this study, the guideline for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is investigated. In the drawbead drawing test, the drawbead forces for verifying the equivalent drawbead model(EDM) and the sheet strains for finding marginal strains from $FLC_0$ are measured. In the finite element analysis (FEA), the bending allowance, R/t, is obtained. Based on the forming and bending allowances obtained, the design guideline of the drawbead for determining height and width, which depends on the restraining force and the forming allowance, is prepared by using EDM.

  • PDF

Application of Equivalent Drawbead Model to Auto-Body Stamping Analysis (차체 스탬핑 해석에 등가 드로우비드 모델의 적용)

  • Lee, J.Y.;Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.389-392
    • /
    • 2009
  • The application of an equivalent drawbead model(EDM) for sheet metal forming analysis, which adopts the forces instead of complex geometries in modeling the drawbead, to the numerical simulation of auto-panel stamping process is introduced in this study. In terms of the thinning and draw-in, better agreement with experimental measurements was found in EDM than in commercial code models so that the excellence of EDM in the accuracy of drawbead forces for the simulation of auto-body stampings was revealed.

  • PDF

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Process (Part2: Modeling) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발 (2부:모델링))

  • 금영탁;이재우;박승우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.50-54
    • /
    • 1997
  • An expert drawbead model is developed to model a cranky drawbead in the finite element analysis of stamping processes. The expert model calculates the drawbead restraining forces (DBRF's) and bead-exit thinning, which are boundary conditions. DBRF's are calculated by considering bending force, unbending force, and friction force in order. Bead-exit thinning are due to the bending and tension during the deformation. The DBFR's and thinning computed form the mathematical model for the basic beads are compared with measurements and correction factors compensating for the differences are found using the multiple linear regression method. The composition beads are assumed to be a combination of basic beads so that the DBRF's and bead-exit thinning are computed to the sum of those of basic beads.

  • PDF