• Title/Summary/Keyword: Drawbead Forces

Search Result 21, Processing Time 0.023 seconds

Experimental Drawbead Dies for Measuring Drawbead Forces (드로우비드력 측정용 실험금형)

  • Moon, S.J.;Lee, M.G.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.511-516
    • /
    • 2008
  • A drawbead die for the experimental determination of drawbead forces was newly introduced in this paper. While the conventional Nine's drawbead die inevitably includes effects of a blank holding force on the measured drawbead forces, the new drawbead die excludes it by removing the blank holder contact in the dieface. Therefore, the new drawbead die can provide more realistic drawbead forces without considering somewhat arbitrary effect of blank holder with the computational procedure of forming process. The drawbead opening force and restraining force obtained by adopting the two experimental dies were compared for the validation of accuracy in the FEM simulation of automotive fender forming process. The compared section strains and draw-ins confirmed that the present drawbead die provides better drawbead forces for an accurate FEM simulation of sheet metal forming process.

Study on the Characteristics of Drawbead Forces in Automotive Stamping Dies (자동차 스템핑 금형의 드로우비드력 특성에 관한 연구)

  • Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.431-433
    • /
    • 2007
  • The drawbeads, which is used for controlling the flow of the sheet by imposing the tension and for preventing the springback in the sheet metal forming process, affects a lot the formability because of the differences in the restraint and opening forces according to the drawbead shapes and dimensions. In this study, the experimental device enabling to measure the drawbead restraining and opening forces was manufactured and the drawing forces of circular, square, and step drawbeads are measured. The drawbead restraining and opening forces of a circular drawbead are increased as its drawbead height is increased. Similarly, those of a square drawbead are increased as its height is increased and shoulder radii decreased. Also, those of a step drawbead are increased as its height and difference in their heights are increased.

  • PDF

Verification of Theoretical Model for Equivalent Drawbend (등가 드로우비드 이론 모델 검증)

  • Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.367-369
    • /
    • 2008
  • A theoretical model of equivalent drawbead for sheet metal forming analysis is experimentally verified in this paper. After the theoretical drawbead models improved a material description for the accurate calculation of drawbead forces are briefly introduced, they are verified by showing the good agreement of their drawbead forces with experimental measurements. Furthermore, the excellence of theoretical models is demonstrated by the comparison with those of commercial codes.

  • PDF

Study on the Characteristics of Drawbead Forces in Automotive Stamping Dies (자동차 스템핑 금형의 드로우비드력 특성에 관한 연구)

  • Moon, S.J.;Wagoner, R.H.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.457-462
    • /
    • 2007
  • The drawbeads, which are used for controlling the flow of the sheet into die cavity by imposing the tension and for preventing the forming defects like wrinkling, springback, etc. during the sheet forming process, affect the formability strongly because of the differences in the restraint and opening forces according to the drawbead shapes and dimensions. In this study, the experimental device enabling to measure the drawbead restraining and opening forces is manufactured and the drawing forces of circular, square, and step drawbeads are measured. The drawbead restraining and opening forces of a circular drawbead are increased as its drawbead height is increased. Similarly, those of a square drawbead are increased as its height is increased and shoulder radii decreased. The drawbead forces obtained from the experiment were compared with those calculated in the numerical simulation of stamping process of automotive fender. Good agreement was found so that the experimental measurements can be used in the simulation of auto-body stamping process.

Experimental Model for Determining Drawbead Forces (드로우비드력 결정을 위한 실험모델)

  • Moon, S.J.;Lee, M.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.217-219
    • /
    • 2008
  • A new experimental model for determining drawbead forces, which modifies the dieface of Nine's experimental model, is introduced and the better validity of the drawbead opening and restraining forces of new model than those of Nine's is demonstrated. While Nine's model considers a blank holding force as one of forming variables, new model excludes it by removing blank holder in the dieface. The comparison of the strains found by FEM simulation of automotive fender draw forming process with those measured in a formed panel recommends the new model for accurate drawbead forces.

  • PDF

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes(Part 2:Modeling) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(2부: 모델링))

  • Keum, Yeong-Tak;Lee, Jae-U
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.12-22
    • /
    • 1998
  • An expert drawbead model is developed for the finite element analysis of stamping processes. The expert model calculates drawbead restraining forces and bead-exit thinnings with the forming condi-tions and drawbead size. The drawbead restraining forces and bead-exit thinnings of a circular draw-bead and stepped drawbead are computed by mathematical models and corrected by the multiple lin-ear regression method based on experimental measurements. The squared drawbead preventing the sheet from drawing-in inside die cavity is assumed to have a very huge drawbead restraining force and no pre-strain just after drawbead. The combined beads are considered as a combination of basic draw-beads such as circular a drawbead stepped drawbead and squared drawbead so that the drawbead restraining forces and bead-exit thinnigs are basically sum of those of basic drawbeads.

  • PDF

Study on the Measurement of Restraining and Opening Forces in Drawbeads (드로우비드 상압력과 인출력 측정에 관한 연구)

  • Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.203-206
    • /
    • 2006
  • The drawbeads, which is used for controlling the flow of the sheet by imposing the tension and for preventing the springback in the sheet metal forming process, affects a lot the formability because of the differences in the restraint and opening forces according to the drawbead shapes and dimensions. In this study, the experimental device enabling to measure the drawbead restraining forces and the drawbead opening forces associated with various drawbead shapes and dimensions and their theoretical evaluation are introduced and verified through the experimental measurement of those of a circular drawbead.

  • PDF

An Experimental Study on the Restraining Characteristics through Square Drawbead (사각형 드로오비드 인출 특성에 관한 실험적 연구)

  • 박원배;김창만;전기찬;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.170-177
    • /
    • 1995
  • The restraining characteristics for the single square drawbead are discussed. The drawbead restraining forces adn maximum strains by the various drawing angles are measured experimentally. During this procedure , the drawing angles are varied from 0$^{\circ}C$ to 60$^{\circ}C$. Also, the wide range of experimental data of the drawing forces and maximum strains for the various drawbead dimensions, dimensions, clearances and blank holding forces are preseted.

  • PDF

Experimental Verification of Equivalent Drawbead Model and Application to Auto-Body Stamping Analysis (등가 드로비드 모델의 실험적 검증 및 차체 스탬핑 해석에 적용)

  • Moon, S.J.;Lee, J.Y.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.371-376
    • /
    • 2009
  • An equivalent drawbead model(EDM) for sheet metal forming analysis, which replaces complex drawbead geometries with drawbead forces in modeling the stamping dies with finite elements, is experimentally verified and applied to the numerical simulation of auto-panel stamping process. The drawbead restraining and opening forces of elliptical drawbead, circular drawbead, square drawbead, and step drawbead are obtained by performing the drawbead pulling test and compared with those of EDM and commercial code models(CCM). Better agreement with experimental measurements is found in EDM than CCM. Furthermore, the excellence of EDM is demonstrated in its application to the auto-body stamping analysis.

Restraining Characteristics for Single Circular and Round Drawbead (단일원형비드 및 환저비드의 인출 특성에 관한 연구)

  • 김창만;임영석;이항수;전기찬;서대교
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.454-467
    • /
    • 1994
  • The drawbead restraining forces for the various radius of drawbead and die corner are analyzed by the belt theory, and they are compared with the experimental results. During this procedure, the drawing angles are also varied from $0^{\circ}$ to $60^{\circ}$, and the near part of the drawed die corner are divided into fur steps for the theoretical analysis. The stress distributions through the sheet thickness for these steps are also suggested theoretically. The wide range of experimental data of the drawing forces and strain distributions for the various dimension and blank holding forces are presented. It is concluded that the theoretical assumption for the restraining force analysis is very useful from the comparison with the experimental results.

  • PDF