• Title/Summary/Keyword: Drainage basin

Search Result 324, Processing Time 0.034 seconds

The Analysis of Basin Parameters Using Digital Map (수치지도를 이용한 유역특성분석)

  • Kang, In-Joon;Choi, Hyun;Lee, Byung-Gul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.229-236
    • /
    • 2001
  • One of the basic tasks in hydrological analysis is to delineate drainage basins and channel networks. Characteristics of channel networks and drainage basin parameters have been used widely in hydrologic calculation and modeling. DEMs(Digital Elevation Models) are generally used to automatically map the channel networks and to delineate drainage basins. This paper presents an effort to analyze basin characteristics using various DEMs. The quantitative analysis of channel networks begins with Horton's method of classifying stream according to Horton orders in hydro-geomorphy. HGSIS(Hydro-Geo-Spatial Information System) is possible to extract parameters. Usually, hydrologists. surveyors and GSIS researchers have some difficulties in accessing satellite images and in extracting DEMs from them. Therefore, the extracted DEMs from contours of digital map is widely used to have the basic works of hydrological analysis. This study presents proper DEMs to calculate Horton's orders, width function, drainage area, main channel length, total channel length, basin elevation and basin slope at digital map of 1:25,000 scale.

  • PDF

A Study on the Relationship between Stream Patterns and Geologic Structures in South Korea (남한의 수계발달과 지질구조와의 관계에 관한 연구)

  • Kim, Kyu Han;Kim, Wan Sook
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.593-599
    • /
    • 1994
  • Drainage patterns were investigated to interpret the unknown geologic structure and geomorphic history in South Korea. Dendritic and rectangular patterns are most prominent ones developed in the granitic and sedimentary terrain. Drainage density ranges from 0.47 in the Nakdong river basin to 0.31 in the South Han river basin. Fine drainge texture is appeared in the Nakdong basin characterized by sedimentary beds of Mesozoic age, and coarse one are in the South Han river basin where Precambrian metamorphic rocks are dominated. Geological structures interpreted by stream pattern analysis are reasonally good agreement with the result by lineaments analysis and geological mapping.

  • PDF

Return Flow Rate Estimation of Irrigation for Paddy Culture in Chuncheon Region of the North Han River Basin (북한강 유역 춘천지역의 논 농업용수 회귀율 산정)

  • Choi Joong-Dae;Choi Ye-Hwan
    • KCID journal
    • /
    • v.9 no.2
    • /
    • pp.68-77
    • /
    • 2002
  • Return flow rate of agricultural irrigation for rice culture was investigated in the North Han river basin, Two small paddy watersheds were chosen and irrigation, drainage, infiltration and evapotranspiration were monitored and estimated during the irriga

  • PDF

Development of a Real Time Control Model for Urban Drainage Systems (도시 내배수시스템 실시간 운영모형의 개발)

  • Jun, Hwandon;Lee, Yang Jae;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.748-755
    • /
    • 2007
  • To develop an efficient pump operating rule for a retard basin, it is necessary to estimate inflow to the retard basin accurately which is affected by the backwater effect at the outlet of the conduit. The magnitude of the backwater effect is dependent on the water depth of a retard basin; however, the depth is determined by the amount of inflow and outflow. Thus, a real time simulation system that is able to simulate urban runoff and the pump operation with the consideration of the backwater effect is required to estimate the actual inflow to a retard basin. With this system, the efficient pump operating rule can be developed to diminish the possible flood damage on urban areas. In this study, a realtime simulation system is developed using the SWMM 5.0 DLL and Visual Basic 6.0 equipped with EXCEL to estimate inflow considering the backwater effect. The realtime simulation can be done by updating realtime input data such as minutely observed rainfall and the depth of a retard basin. Using those updated input data, the model estimates actual inflow, the amount of outflow discharged by pumps and gates, the depth of each junction, and flow rate at a sewer pipe on realtime basis. The developed model was applied to the Joonggok retard basin and demonstrated that it can be used to design a sewer system and to estimate actual inflow through the inlet sewer to reduce the inundation risk. As results, we find that the model can contribute to establish better operating practices for the pumps and the flood drainage system.

Application of the Fuzzy Models for the Efficient Operation of Pumping Station (배수펌프장의 효율적인 운영을 위한 퍼지모형의 적용)

  • Kim, Yun-Tae;Shim, Jae-Hyun;Chung, Jae-Hak;Ahn, Jae-Chan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.51-60
    • /
    • 2004
  • Urban flood damage has been caused by drainage deficiency. One of the methods to solve this problem is to construct detention basin and Pumping station and to pump out the water to the river. However, because of rapid urbanization, the capacity of drainage pipelines is sometimes not sufficient enough during the rainy season. Therefore, even though we have enough pumping stations, the inflow of surface water never reaches to the detention area, causing floods in urban area. This research is to find improvement of urban drainage system, estimating drainage pipeline risk. Also, eight models for a computer program were developed for practical use. The models were verified changing precipitation duration, intensity, design period, time distribution model, and etc. This verification was processed focusing that the model can regulate the water level in the detention basin and minimize the effect downstream. As a result Fuzzy models were found to be efficient to lower the water level in detention basin, and decreased about 8 cm in water level of downstream.

Land Cover Classification and Effective Rainfall Mapping using Landsat TM Data (Landsat TM 자료를 이용한 토지피복분류와 유효우량도의 작성)

  • Shin, Sha-Chul;Kwon, Gi-Ryang;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.411-423
    • /
    • 2002
  • Accurate and real time forecasting of runoff has a high priority in the drainage basins prone to short, high intensity rainfall events causing flash floods. To take into account the resolution of hydrological variables within a drainage basin, use of distributed system models is preferred. The Landsat Thematic Mapper(TM) observations enable detailed information on distribution of land cover and other related factors within a drainage basin and permit the use of distributed system models. This paper describes monitoring technique of rainfall excess by SCS curve number method. The time series maps of rainfall excess were generated for all the storm events to show the spatiotemporal distribution of rainfall excess within study basin. A combination of the time series maps of rainfall excess with a flow routing technique would simulate the flow hydrograph at the drainage basin outlet.

The Geomorphic Development of Angyae Basin (안계분지(安溪盆地)의 지형발달)

  • Bak, Byeong-Su;Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.51-62
    • /
    • 1997
  • In various places of drainage basins of major rivers in South Korea are distributed intermontane basins. Basin floor covered with fluvial deposits carried from the surrounding mountane area becomes alluvial plain. Its productivity is comparatively higher than anywhere else. Thus basin is a local administrative, economic, and cultural core area. Intermontane basin consists of backward mountane area, gentle hills, and alluvial lowland. The purpose of this paper is to elucidate the morpogenetic processes and development age of Angae Basin located in the sedimentary rock region. Hills with the height of a.s.l. $80{\sim}100m$ distributed in Angae Basin are residual landforms, which are the remnants of dissection of the etchplain that results from the denudation of bedrock deeply weathered along tectolineaments under the warm and moist climate, and reflect lithological differentiation of bedrock. Those hills have been comparatively higher ridges since the initial stage of the original etchplain, and they have been immune from fluvial processes. The etchplain appeared as $80{\sim}100m$ hills. the high terrace distributed in upstream reach of Nakdong River drainage basin and the old meander-cut at Seoburi in Wicheon drainage basin, are formed at the same stage when riverbed of Wicheon Stream functioned as a local base level according as the fluvial system of Wichoen arrived at dynamic equilibrium.

  • PDF

Physical Geography of Munkyung (문경의 자연지리)

  • Bak, Byeong-Su;Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.15-30
    • /
    • 1998
  • Physical geography is the discipline which deals with the relationship between man and natural environment. Therefore, it should be studied as the organized unity. In this paper I recognize the drainage basin as a framework outlining physical geography, describe the difference of inhabitant's life style due to the difference of natural environment in the drainage basin, and consider the meaning of drainage basin as a unit of life(and unit of regional geography). Munkyung is divided into three regions(intermontane basin region, middle mountainous region, marginal hilly region of the great basin) owing to the topographic characteristics. Subdivision in these regions is related closely to drainage network distribution, specially in intermontane basin region. And small regions have developed with the confluence point of $3{\sim}4$ order streams as the central figure. Intermontane basin region is the valley floor of Sinbuk-Soya-Kauun-Nongam stream located in the limestone region which is exposed according to Munkyung fault at its northern part. Small streams are affected strongly by the influence of the NNE-SSE or WNW-ESE tectolineament. Thus Kaeripryungro(鷄立嶺路), Saejaegil(새재길), Ewharyungro(伊火嶺路) and so on are constructed through the tectolineament. In the valley floors of small streams which flow into the intermontane basin, there are large floodplains. Floodplain in Sinbuk, Joryung, and Yangsan stream is used to paddy field or orchard, and in Nongam stream is used to paddy field or vegetable field. Hills are distributed largely in the periphery of intermontane basin. Limestone hills in Kauun and Masung basin are not continuous to the present low and flat floodplain, and most of those are used to forest land and field. On the other side. granite hills in Koyori are continuous to be used to the present floodplain, and they are used to residential area and field. In the middle mountainous region are there hilly mountains constructed in the geology of Palaeozoic Pyeongan System in northern area and Chosun System's Limestone Series in southern area, and banded gneiss and schist among Sobaeksan Gneiss Complex. In Palaeozoic Pyeongan System region are there relatively rugged mountains and ingrown meanders developed along tectolineaments. Chosun System's Limestone Series region builds up a geomorphic surface, develops various karst landforms. Mountainous area is used to field. On the other hand, especially in case of Hogye, valley bottom is wide, long, and discontinuous to slope, is used to paddy field dominantly. And schist region in Youngnam Block of Pre-Cambrian is rugged mountainous. Marginal hilly region of the great basin is hilly zone located in the margin of erosional basin(Bonghwa-Youngju-Yechon-Hamchang-Sangju). This region is lower geomorphic surface which is consisted of hills of $50{\sim}100$m height. Hills are used to field or orchard, and dissected gentle depression is used to paddy field.

  • PDF

Effects of Combined Sewer Overflows According to Drainage Basin Types (유역형상에 따른 합류식 하수도의 월류부하량 추정)

  • Lee, Cheol-Kyu;Hyun, In-Hwan;Jeong, Jeong-Youl;Shim, Jae-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.21-26
    • /
    • 2004
  • It is muck important to determine the intercepting capacities as measures for reducing the load of contamination influenced by CSOs during wet weather period. Intercepting and treating the whole rainfalls can be best measured for reducing the contamination load, but it is not desirable in view of scale and preservation of the wastewater treatment facilities. This study analyzed the quantity and quality of the water in the combined sewer by method of changing the type and size of drainage basin and intercepting capacities in rainfalls, estimate the influence the other CSOs at the change of planned intercepted quantity, and compared the degree of contamination load between the combined system and separate system by examining the influence of the other CSOs at the change of planned intercepted quantity.

A Study on Development Standard Calculation Program of Forest Road Drainage Facilities (임도 배수시설 규격 산정 프로그램 개발에 관한 연구)

  • Choi, Yeon-Ho;Lee, Joon-Woo;Kim, Myeong-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.25-33
    • /
    • 2011
  • The purpose of this study is to develop a standard calculation program of forest road drainage facilities that may help forest road designers to design forest road drainage facilities more conveniently and precisely. Especially, the characteristics of this program is that the forest road designers may calculate the amount of outflow in the basin using rainfall intensity data conveniently, without the data designers should acquire through site measurements when they carry out indoor preliminary measurements before they go out for outdoor measurements. In this manner, excessive design may be restrained by offering minimum standard calculation for drainage structures. And also this study was designed to facilitate proper layout of drainage structures by calculating outflow discharge of each basin where forest roads will be installed. Especially, this study will contribute to leveling-up of forest design techniques as the researcher has prepared the reports on whole process of drain pipe installation and provided them in the form of computer file or printout, which show a rational design process, and make it possible to modify in case of an error.