• Title/Summary/Keyword: Downstream Flame

Search Result 90, Processing Time 0.022 seconds

A study of turbulent premixed flame structure in a plane shear layer (평면전단층의 난류예혼합 화염의 구조에 관한 실험적 연구)

  • 이재득;최병륜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.33-39
    • /
    • 1989
  • A turbulent premixed flames of layer formed between burned hot gas and unburned mixture were investigated by means of schlieren photograph with fluctuations of temperature and ion current. The combustion intensity between burned hot gas and shear layer was higher than the intensity between unburned mixture and shear layer. A wrinkled laminar flame and flamelet were appeared at downstream to exist and distributed reaction zone was at upstream as a result of analyzed probability density functions of temperature fluctuation. The initial combustion intensity of reaction zone of eddy between burned hot gas and shear layer was higher than that of final, flowing downstream, and vice versa between unburned mixture and shear layer.

  • PDF

Basic flow fields and stability characteristics of two dimensional V flames (이차원 V 화염의 기본 유동장과 안정화 특성)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong;Kim, Moon-Uhn
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.185-193
    • /
    • 2003
  • Basic flow fields of two dimensional V flames were examined as a preliminary work to study the instability of premixed flame with vorticity generation. Laminar premixed propane and methane flame were anchored by electrically heated wire to make two dimensional V flames. Flow fields were measured mainly by PIV(Particle Image Velocimetray) and the results were compared with those obtained by LDV(Laser Doppler Velocimetry) to confirm their reliability. Because the curvatures of V flames are so small, V flames were locally assumed to be inclined planar flames in gravitational field. The measured flow fields were locally compared with those of analytical solutions, which showed the qualitatively similar results. In downstream region, the vorticity fields were nearly constant except region near the center line, which support the assumption of locally one dimensional flame. Besides it was tried to find experimentally the similarity of flow fields in downstream region. Finally, stability diagram of propane and methane flames were drawn for the equivalence ratio less than one and the wide range of mean velocity.

  • PDF

Numerical Study on H2 Preferential Diffusion Effect in Downstream Interactions between Premixed H2-air and CO-air Flames (상호작용 하는 H2-공기/CO-공기 예혼합화염에 미치는 H2 선호 확산 영향에 대한 수치적 연구)

  • Chung, Yong Ho;Park, Jeong;Kwon, Oh Boong;Keel, Sang In;Yun, Jin Han
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.37-43
    • /
    • 2013
  • The effects of preferential diffusion of hydrogen in interacting counterflow $H_2$-air and CO-air premixed flames were investigated numerically. The global strain rate was varied in the range $30-5917s^{-1}$, where the upper bound of this range corresponds to the flame-stretch limit. Preferential diffusion of hydrogen was studied by comparing flame structures for a mixed average diffusivity with those where the diffusivities of H, $H_2$ and $N_2$ were assumed to be equal. Flame stability diagrams are presented, which show the mapping of the limits of the concentrations of $H_2$ and CO as a function of the strain rate. The main oxidation route for CO is $CO+O_2{\rightarrow}CO_2+O$, which is characterized by relatively slow chemical kinetics; however, a much faster route, namely $CO+OH{\rightarrow}CO_2+H$, can be significant, provided that hydrogen from the $H_2$-air flame is penetrated and then participates in the CO-oxidation. This modifies the flame characteristics in the downstream interaction between the $H_2$-air and CO-air flames, and can cause the interaction characteristics at the rich and lean extinction boundaries not to depend on the Lewis number of the deficient reactant, but rather to depend on chemical interaction between the two flames. Such anomalous behaviors include a partial opening of the upper lean extinction boundary in the interaction between a lean $H_2$-air flame and a lean CO-air flame, as well as the formation of two islands of flame sustainability in a partially premixed configuration with a rich $H_2$-air flame and a lean CO-air flame. At large strain rates, there are two islands where the flame can survive, depending on the nature of the interaction between the two flames. Furthermore, the preferential diffusion of hydrogen extends both the lean and the rich extinction boundaries.

Effect of Acoustical Excitation and Flame Stabilizer on a Diffusion Flame Characteristics (음향가진과 보염기형상이 확산화염의 특성에 미치는 영향)

  • Jeon, C.H.;Chang, Y.J.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Lots of techniques are adopted for a flame stabilization and a high-load combustion. But the techniques being used were passive control method which have to change combustor shape like pilot flame, flame stabilizer, pressure profile, etc. Active control method which is not necessary to transform its shape is employed. Acoustical excitation is broadly used for its convenience in changing frequency and intensity. Both acoustical excitation and flame stabilizers were adopted to study their relationship. So, we investigated flammability limits. Flame visualization. And mean temperature in the condition of various frequencies, intensities, and flame stabilizers. As a consequence, flammability limit were advanced in acoustically excited flame at some frequencies. Coherent structure was extended to the downstream region through acoustical excitation and a size of vortice was curtailed. Also width of recirculation zone was magnified. In addition, Effects of acoustical excitation was stood out at 25mm flame stabilizer rather than another ones.

  • PDF

A study of Instability on Oscillating Laminar Premixed Flames (진동하는 층류예혼합화염의 불안정성에 관한 연구)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.8-15
    • /
    • 2008
  • When a circular cylinder is placed at the center of a slot burner nozzle, once stable Woflhard-Parker type laminar lean premixed flame is changed to an oscillating flame with self-induced noise. The wrinkled flame surface showed the same pattern and frequency of the Karman vortex street at the downstream of a circular cylinder. The interaction of flame with Karman vortex street is observed to be responsible for flame oscillation. The measured flame oscillation frequency is very similar to the estimated Karman vortex shedding frequency based on the St-Re relationship of the flow past circular cylinder, which could be considered as a strong evidence for the interaction between laminar pre-mixed flame and a Karman vortex street. As Reynolds number increases oscillation frequency decreases and the self-induced noise level increases as well as the flame front is more severly wrinkled. This result suggests that the flame/vortex interaction becomes more active at higher Re.

  • PDF

Spray and Combustion Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 분무 및 연소 특성)

  • Hwang, Jin-Seok;Koo, Ja-Ye;Seong, Hong-Gye;Kang, Jeong-Seek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.381-386
    • /
    • 2007
  • Jet-A spray, evaporation and combustion were numerically analyzed in annular type model combustor using KIVA-3V. Liquid fuel's atomizing was affected by flow field near droplet. When cooling flow was not optimized, SMD was increased, and equivalence ratio was horizontally distributed in combustor's downstream. Flame spread out horizontally and separated in combustors downstream. Flame center was separated by cooling flow. Flame separation made local high temperature in downstream that caused NO increase.

  • PDF

Effects of H2O Addition in Downstream Interaction between H2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합 화염 사이의 후류상호작용에 있어서 H2O 첨가 효과)

  • Park, Jeong;Kwon, Oh Boong;Kim, Tae Hyung;Park, Jong Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • Numerical study was conducted to clarify effects of added $H_2O$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced in increase of strain rate. The most discernible difference between the two with and without having $H_2O$ and/or $H_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the OH-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with very short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $H_2O$ help lean flames at relatively low strain rate be sustained, and suppress the flame stabilization at high strain rates.

A Study on the Influence of Equivalence Ratio and Kinds of fuel in Flame Structure (화염 구조에 미치는 연료 및 당량비에 관한 연구)

  • Park, S.K.;Choi, N.J.;Yamashita, H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.43-49
    • /
    • 1998
  • In order to clarify the effect of equivalence ratio and kinds of fule in flame structure, a numerical simulation of triple flame developed in a co-flowing methane-air and air stream was carried out by the elementary chemical reaction mechanism. The following conclusions were obtained. Equivalence ratio at which the apparent burning velocity is maximum is a little larger than that of the one-dimensional premixed flame. Apparent burning velocities are two times higher than that of the one-dimensional premixed flame for the methane-air. The flame thrusts out forward in the downstream of the boundary between mixture and air stream, and a part of the flow is bent and forks out in this protruding flame so that a triple flame is originated; this triple flame is composed of fuel rich and lean premixed flame branches and a diffusion flame branch. Near the equivalence ratio at which the burning velocity of rule-dimensional premixed flame is the largest the effect of one-dimensional premixed flame becomes large and the fuel rich premixed flame advances and becomes vertical to the flow direction.

  • PDF

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

Observation on Double-droplet Combustion Speed in Premixed Spray Flame (예혼합 분무화염내의 이중적 액적 연소속도에 관한 관찰)

  • Lee, Chi-Woo;Shim, Han-Sub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.119-126
    • /
    • 2004
  • In order to elucidate the modes of double-droplet combustion speed in premixed spray flame, the difference between flame propagation speed and droplet cluster disappearance speed are experimentally investigated using a premixed spray burner system, It was confirmed that flame speed concerned with premixed-mode combustion in the spray flame was approximately 2.0 m/s in average while mean disappearance speed of droplet clusters, which were dominated by diffusion-mode combustion in downstream of the flame, was evaluated as much as 0.45 m/s. It was clarified that both characteristics of premixed-mode and diffusion-mode combustion in spray flames are of much difference in nature, even though both speed, which are supposed to depend on local properties of the spray itself and flow conditions surrounding droplet clusters, are scattered in experiments.