References
- Vu TM, Song WS, Park J, Kwon OB, Yu HS. Measurements of propagation speeds and flame instabilities in biomass derived gas-air premixed flames. Int. J. Hydrogen Energy 2011;36:12058-12067. https://doi.org/10.1016/j.ijhydene.2011.06.082
- Song WS, Park J, Kwon OB, Kim YJ, Kim TH, Yun JH, Keel SI. Effects of syngas addition on flame propagation and stability in outwardly propagating spherical dimethyl ether-air premixed flame. Int. J. Hydrogen Energy 2013;38:14102-14114. https://doi.org/10.1016/j.ijhydene.2013.08.037
-
Fotache CG, Tan Y, Sung CJ, Law CK. Ignition of
$CO/H_2/N_2$ versus heated air in counterflow: experimental and modeling results. Combust Flame 2000;120:417-26. https://doi.org/10.1016/S0010-2180(99)00098-X - Vagelopoupos CM, Egolfpoulos FN. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Proc Combust Inst 1994;25:1317-23.
- Mclean IC, Smith DB, Taylor SC. The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction. Proc Combust Inst 1994;25:749-57.
-
Brown MJ, Mclean IC, Smith DB, Taylor SC. Markstein lengths of
$CO/H_2/$ air flames using expanding spherical flames. Proc Combust Inst 1996;26:875-81. -
Natarajan J, Lieuwen T, Seitzman J. Laminar flame speeds of
$H_2/CO$ mixture effects of$CO_2$ dilution, preheat temperature, and pressure. Combust Flame 2007;151:104-9. https://doi.org/10.1016/j.combustflame.2007.05.003 - Vu TM, Park J, Kwon OB, Kim JS. Effects of hydrocarbon addition on cellular instabilities in expanding syngas-air spherical premixed flames. Int J Hydrogen Energy 2009;34:6961-9. https://doi.org/10.1016/j.ijhydene.2009.06.067
-
Davis SG, Joshi AV, Wang H, Egolfopoulos F. An optimized kinetic model of
$H_2/CO$ combustion. Proc Combust Inst 2005;30:1283-92. - Park J, Keel SI, Yun JH, Kim TK. Effects of addition of electrolysis products in methane-air diffusion flames. Int J Hydrogen Energy 2007; 32:4059-70. https://doi.org/10.1016/j.ijhydene.2007.05.024
-
Park J, Keel SI, Yun JH. Addition Effects of
$H_2$ and$H_2O$ on Flame Structure and Pollutant Emission in Methane-Air Diffusion Flame. Energy & Fuels 2008;21:3216-24. - Kim JS, Park J, Kwon OB, Yun JH, Keel SI, Kim TK. Preferential diffusion effects on NO formation in methane/hydrogen-air diffusion flames. Energy & Fuels 2008; 22:278-83. https://doi.org/10.1021/ef700505a
- Ishizuka S, Law CK. An experimental study on extinction and stability of stretched premixed flames. Proc. Combust. Inst. 1982;19:327-35.
- Sohrab SH, Ye ZY, Law CK. An experimental investigation on flame interaction and the existence of negative flame speeds. Proc Combust Inst 1984; 20:1957-65.
- Sohrab SH, Ye ZY, Law CK. Theory of interactive combustion of counterflow premixed flames. Combust Sci Technol 1986;45:27. https://doi.org/10.1080/00102208608923840
- Chung SH, Kim JS, Law CK. Extinction of interacting premixed flames: theory and experimental comparisons. Proc Combust Inst 1986;21:1845-51.
- Kim JS, Park J, Bae DS, Vu TM, Ha JS, Kim TK. A Study on Methane-air Premixed Flames Interacting with Syngas-air Premixed Flames. Int J Hydrogen Energy 2010;35:1390-400. https://doi.org/10.1016/j.ijhydene.2009.11.078
- Ha JS, Moon CW, Park J, Kim JS, Yun JH, Keel SI. A Study on Flame Interaction between Methaneair and Nitrogen-diluted Hydrogen-air Premixed Flames. Int J Hydrogen Energy 2010;35:6992-7001. https://doi.org/10.1016/j.ijhydene.2010.04.104
- Ha JS, Park J, Vu TM, Kwon OB, Yun JH, Keel SI. Effect of flame stretch in downstream interaction between premixed syngas-air flames. Int J Hydrogen Energy 2011;36: 13181-93. https://doi.org/10.1016/j.ijhydene.2011.07.042
-
Kim TH, Song WS, Park J, Kwon OB, Park JH. Effects of Preferential Diffusion on Downstream Interaction in Premixed
$H_2/CO$ Syngas-Air Flames. Int J Hydrogen Energy 2012;37:12015-27. https://doi.org/10.1016/j.ijhydene.2012.05.074 -
Kim YJ, Kim TH, Park J, Kwon OB, Yun JH, Keel SI. Preferential diffusion effects in downstream interaction between premixed
$H_2$ -air and CO-air flames. Fuel 2014;116: 550-559. https://doi.org/10.1016/j.fuel.2013.08.055 -
Jung SW, Park J, Kwon OB, Kim YJ, Keel SI, Yun JH, Lim IG. Effects of
$CO_2$ addition on flame extinction in interacting$H_2$ -air and CO-air premixed flames. Fuel 2014;136:69-78. https://doi.org/10.1016/j.fuel.2014.07.009 -
Park J, Keel SI, Yun JH. Addition Effects of
$H_2$ and$H_2O$ on Flame Structure and Pollutant Emission in Methane-Air Diffusion Flame. Energy & Fuels 2007;21:3216-3224. https://doi.org/10.1021/ef700211m - Kee RJ, Miller JA, Evans GH, Dixon-Lewis G. A computational model of the structure and extinction of strained, opposed flow, premixed methaneare flame. Proc Combust Inst 1988;22:1479-94.
- Lutz AE, Kee RJ, Grcar JF, Rupley FM. A fortran program for computing opposed-flow diffusion flames. Sandia National Laboratories Report. SAND 96-8243; 1997.
- Ju Y, Guo H, Maruta K, Liu F. On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames. J Fluid Mech 1997;342:315. https://doi.org/10.1017/S0022112097005636
- Kee RJ, Rupley FM, Miller JA. Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics. Sandia National Laboratories Report. SAND 89-8009B; 1989.
- Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA. A fortran computer code package for the evaluation of gas-phase multi-component transport. Sandia National Laboratories Report. SAND 86-8246; 1994.
- Nishioka A, Law CK, Takeno T. A flame-controlling continuation method for generating S-curve responses with detailed chemistry. Combust. Flame 1996;104: 328-342. https://doi.org/10.1016/0010-2180(95)00132-8