• Title/Summary/Keyword: Double-Gate

Search Result 375, Processing Time 0.028 seconds

Threshold Voltage Roll-off for Bottom Gate Voltage of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 하단게이트 전압에 따른 문턱전압이동현상)

  • Jung, Hakkee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.741-744
    • /
    • 2014
  • This paper has analyzed threshold voltage roll-off for bottom gate voltages of asymmetric double gate(DG) MOSFET. Since the asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates, the bottom gate voltage influences on threshold voltage. It is, therefore, investigated how the threshold voltage roll-off known as short channel effects is reduced with bottom gate voltage. In the pursuit of this purpose, off-current model is presented in the subthreshold region, and the threshold voltage roll-off is observed for channel length and thickness with a parameter of bottom gate voltage as threshold voltage is defined by top gate voltage that off-currnt is $10^{-7}A/{\mu}m$ per channel width. As a result to observe the threshold voltage roll-off for bottom gate voltage using this model, we know the bottom gate voltage greatly influences on threshold voltage roll-off voltages, especially in the region of short channel length and thickness.

  • PDF

Quantitative Analysis on Voltage Schemes for Reliable Operations of a Floating Gate Type Double Gate Nonvolatile Memory Cell

  • Cho, Seong-Jae;Park, Il-Han;Kim, Tae-Hun;Lee, Jung-Hoon;Lee, Jong-Duk;Shin, Hyung-Cheol;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.195-203
    • /
    • 2005
  • Recently, a novel multi-bit nonvolatile memory based on double gate (DG) MOSFET is proposed to overcome the short channel effects and to increase the memory density. We need more complex voltage schemes for DG MOSFET devices. In view of peripheral circuits driving memory cells, one should consider various voltage sources used for several operations. It is one of the key issues to minimize the number of voltage sources. This criterion needs more caution in considering a DG nonvolatile memory cell that inevitably requires more number of events for voltage sources. Therefore figuring out the permissible range of operating bias should be preceded for reliable operation. We found that reliable operation largely depends on the depletion conditions of the silicon channel according to charge amount stored in the floating gates and the negative control gate voltages applied for read operation. We used Silvaco Atlas, a 2D numerical simulation tool as the device simulator.

Study on the Fabrication of EPROM and Their Characteristics (EPROM의 제작 및 그 특성에 관한 연구)

  • 김종대;강진영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.67-78
    • /
    • 1984
  • EAROM device is an n-channel MOS transistor with a control gate stack ed on the floating gate. On account of channel injection type, channel lengths are designed 4-8 $\mu$m and chinnel widths 5-14 $\mu$m. These devices which have fourstructures of different type control gate are designed by NMOS 5 $\mu$m design rule and fabricated by double polysilicon gate NMOS Process. Double ion implantation is applied to increase punchthrough voltage and gate-controlled channel breakdown voltage. The drain and gate voltage for programming was 13-17V and 20-25V, respectively. EPROM cell fabricated could be erased not by optical method but by electrical method. The result of charge retention test showed decrease in stored charges by 4% after 200 hours at 1$25^{\circ}C$.

  • PDF

Development of Low-Vgs N-LDMOS Structure with Double Gate Oxide for Improving Rsp

  • Jeong, Woo-Yang;Yi, Keun-Man
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.193-195
    • /
    • 2009
  • This paper aims to develop a low gate source voltage ($V_{gs}$) N-LDMOS element that is fully operational at a CMOS Logic Gate voltage (3.3 or 5 V) realized using the 0.35 μm BCDMOS process. The basic structure of the N-LDMOS element presented here has a Low $V_{gs}$ LDMOS structure to which the thickness of a logic gate oxide is applied. Additional modification has been carried out in order to obtain features of an improved breakdown voltage and a specific on resistance ($R_{sp}$). A N-LDMOS element can be developed with improved features of breakdown voltage and specific on resistance, which is an important criterion for power elements by means of using a proper structure and appropriate process modification. In this paper, the structure has been made to withstand the excessive electrical field on the drain side by applying the double gate oxide structure to the channel area, to improve the specific on resistance in addition to providing a sufficient breakdown voltage margin. It is shown that the resulting modified N-LDMOS structure with the feature of the specific on resistance is improved by 31%, and so it is expected that optimized power efficiencies and the size-effectiveness can be obtained.

Simulation of High-Speed and Low-Power CMOS Binary Image Sensor Based on Gate/Body-Tied PMOSFET-Type Photodetector Using Double-Tail Comparator

  • Kwen, Hyeunwoo;Kim, Sang-Hwan;Lee, Jimin;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.82-88
    • /
    • 2020
  • In this paper, we propose a complementary metal-oxide semiconductor (CMOS) binary image sensor with a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector using a double-tail comparator for high-speed and low-power operations. The GBT photodetector is based on a PMOSFET tied with a floating gate (n+ polysilicon) and a body that amplifies the photocurrent generated by incident light. A double-tail comparator compares an input signal with a reference voltage and returns the output signal as either 0 or 1. The signal processing speed and power consumption of a double-tail comparator are superior over those of conventional comparator. Further, the use of a double-sampling circuit reduces the standard deviation of the output voltages. Therefore, the proposed CMOS binary image sensor using a double-tail comparator might have advantages, such as low power consumption and high signal processing speed. The proposed CMOS binary image sensor is designed and simulated using the standard 0.18 ㎛ CMOS process.

Characteristics of Double Polarity Source-Grounded Gate-Extended Drain NMOS Device for Electro-Static Discharge Protection of High Voltage Operating Microchip (마이크로 칩의 정전기 방지를 위한 DPS-GG-EDNMOS 소자의 특성)

  • Seo, Yong-Jin;Kim, Kil-Ho;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.97-98
    • /
    • 2006
  • High current behaviors of the grounded gate extended drain N-type metal-oxide-semiconductor field effects transistor (GG_EDNMOS) electro-static discharge (ESD) protection devices are analyzed. Simulation based contour analyses reveal that combination of BJT operation and deep electron channeling induced by high electron injection gives rise to the 2-nd on-state. Thus, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  • PDF

Threshold Voltage Shift for Doping Profile of Asymmetric Double Gate MOSFET (도핑분포함수에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동현상)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.903-908
    • /
    • 2015
  • This paper has analyzed threshold voltage shift for doping profile of asymmetric double gate(DG) MOSFET. Ion implantation is usually used in process of doping for semiconductor device and doping profile becomes Gaussian distribution. Gaussian distribution function is changed for projected range and standard projected deviation, and influenced on transport characteristics. Therefore, doping profile in channel of asymmetric DGMOSFET is affected in threshold voltage. Threshold voltage is minimum gate voltage to operate transistor, and defined as top gate voltage when drain current is $0.1{\mu}A$ per unit width. The analytical potential distribution of series form is derived from Poisson's equation to obtain threshold voltage. As a result, threshold voltage is greatly changed by doping profile in high doping range, and the shift of threshold voltage due to projected range and standard projected deviation significantly appears for bottom gate voltage in the region of high doping concentration.

Analysis for Gate Oxide Dependent Subthreshold Swing of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 문턱전압이하 스윙에 대한 게이트 산화막 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.885-890
    • /
    • 2014
  • This paper has presented the change of subthreshold swings for gate oxide thickness of asymmetric double gate(DG) MOSFET, and solved Poisson equation to obtain the analytical solution of potential distribution. The Gaussian function as doping distribution is used to approch experimental results. The symmetric DGMOSFET is three terminal device. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine the bias voltage and oxide thickness for top and bottom gates. As a result to observe the subthreshold swings for the change of top and bottom gate oxide thickness, we know the subthreshold swings are greatly changed for gate oxide thickness. Especially we know the subthreshold swings are increasing with the increase of top and bottom gate oxide thickness, and top gate oxide thickness greatly influences subthreshold swings.

Analysis for Top and Bottom Subthreshold Swing of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에 대한 상·하단 문턱전압이하 스윙 분석)

  • Jung, Hakkee;Kwon, Ohsin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.704-707
    • /
    • 2013
  • This paper has analyzed the subthreshold swings for top and bottom gate voltages of asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates. The subthreshold swing, therefore, has to be analyze not only for top gate voltage, but also for bottom gate voltage. In the pursuit of this purpose, Poisson equation has been solved to obtain the analytical solution of potential distribution with Gaussian function, and the subthreshold swing model has been presented. As a result to observe the subthreshold swings for the change of top and bottom gate voltage using this subthreshold swing model, we know the subthreshold swings are greatly changed for gate voltages. Especially we know the conduction path has been changed for top and bottom gate voltage and this is expected to greatly influence on subthreshold swings.

  • PDF

Analysis on Subthreshold Swing of Asymmetric Junctionless Double Gate MOSFET for Parameters for Gaussian Function (가우스 함수의 파라미터에 따른 비대칭형 무접합 이중 게이트 MOSFET의 문턱전압 이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.255-263
    • /
    • 2022
  • The subthreshold swing (SS) of an asymmetric junctionless double gate (AJLDG) MOSFET is analyzed by the use of Gaussian function. In the asymmetric structure, the thickness of the top/bottom oxide film and the flat-band voltages of top gate (Vfbf) and bottom gate (Vfbb) could be made differently, so the change in the SS for these factors is analyzed with the projected range and standard projected deviation which are parameters for the Gaussian function. An analytical subthreshold swing model is presented from the Poisson's equation, and it is shown that this model is in a good agreement with the numerical model. As a result, the SS changes linearly according to the geometric mean of the top and bottom oxide film thicknesses, and if the projected range is less than half of the silicon thickness, the SS decreases as the top gate oxide film is smaller. Conversely, if the projected range is bigger than a half of the silicon thickness, the SS decreases as the bottom gate oxide film is smaller. In addition, the SS decreases as Vfbb-Vfbf increases when the projected range is near the top gate, and the SS decreases as Vfbb-Vfbf decreases when the projected range is near the bottom gate. It is necessary that one should pay attention to the selection of the top/bottom oxide thickness and the gate metal in order to reduce the SS when designing an AJLDG MOSFET.