• Title/Summary/Keyword: Double-Circuit Transmission Line

검색결과 63건 처리시간 0.031초

Environmental effects by corona discharge from a 765kV double circuit transmission line (765kV 2회선 송전선의 코로나 방전에 의한 환경영향 연구)

  • 김정부;이동일;신구용;양광호;안희성;구자윤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • 제45권3호
    • /
    • pp.451-455
    • /
    • 1996
  • This paper specified the measurement results conducted by the Korea Electric Power Research Institute (KEPRI) 765kV double circuit transmission test line that measured the audible noise, hum noise, radio interference, electric field and aeolian measurement. This test line consists of 6-480mm$^{2}$ conductors per phase. The analysis of the test results shows that this 6-Rail conductor bundle satisfies the audible noise criterion under the stable rainy weather condition and the radio interference level under the fair weather. And the other items are also agreed with the design level criterion. (author). 9 refs., 7 figs., 2 tabs.

  • PDF

The Discrimination of Fault Type by Unsupervised Neural Network (자율 학습 신경회로망을 이용한 고장상 선은 알고리즘)

  • Lee Jae Wook;Choi Chang Yeol;Jang Byung Tae;Lee Myung Hee;No Jang Hyun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.384-387
    • /
    • 2004
  • The direction and the type of a fault on a transmission line need to be identified rapidly and correctly, The work described in this paper addresses the problem encountered by a conventional algorithm in a fault type classification in double circuit line, this arises due to a mutual coupling and CT saturation under the fault condition. We present an approach to identify fault type with novel neural network on double circuit transmission line. The neural network based on combined unsupervised training method provides the ability classify the fault type by different patterns of the associated voltages and currents.

  • PDF

A simulation of Lightning Performance of the 154 kV Transmission Line with the Surge Arrester Installation (154 kV 송전선로에 피뢰기 설치시 내뢰성 향상효과 모의)

  • Shim, Eung-Bo;Woo, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 E
    • /
    • pp.1642-1644
    • /
    • 1997
  • The simulation study of lightning faults reducing effects by the installation of surge arresters on the 154 kV transmission line is stated here. For the purpose of detailed simulation of arcing horn, a flashover model with dynamic characteristics of arcing horn gap was represented as a non-linear inductance which is controlled by EMTP/TACS(Electromagnetic Transient Program/fransient Analysis of Control Systems) switches. The back flashover inducing current was increased from 50 kA to 88 kA by the installation of surge arresters on the transmission line which has one ground wire and 20 ohms of tower footing resistances. The great advantage of surge arrester installation on one circuit of the double circuit transmission line is to prevent the simultaneous back flashover up to 190 kA.

  • PDF

Magnetic Field Analysis in Accordance with Line Configuration Type in Underground Transmission Systems (지중송전계통에서 선로의 구성방식에 따른 자계 해석)

  • Lee, Jae-Myeong;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제64권12호
    • /
    • pp.1673-1678
    • /
    • 2015
  • This paper describes magnetic field on power cable in underground transmission systems. Based on specification which is being used in domestic power utility, magnetic field was analyzed in accordance with line arrangement, line burial depth and phase spacing. Magnetic field magnitude and its trend were understood in each circuit type such as double circuits, triple circuits and quadruple circuits of underground transmission systems. In addition, magnetic field was analyzed according to phase arrangement changing in each circuit. Finally, the proper phase arrangement configuration type was suggested by the evaluation of analysis result. Magnetic field was calculated by using Biot-Savart's law. According to the evaluated magnetic fields based on phase layout configuration in each circuit, it figured out that each of magnetic fields was different. As a result, this paper proposes a proper phase layout configuration for generating minimum magnetic field. It is evaluated that the phase layout configuration in each circuit proposed in this paper can be used at actual underground transmission systems.

Analysis of Different 500kV HVAC Transmission Lines Lightning Shielding

  • Nayel, Mohamed
    • Journal of the Korea Convergence Society
    • /
    • 제4권4호
    • /
    • pp.49-57
    • /
    • 2013
  • The lightning shielding of different 500 kV HVAC-TL high voltage AC transmission lines was analyzed. The studied transmission lines were horizontal flat single circuit and double circuit transmission lines. The lightning attractive areas were drawn around power conductors and shielding wires. To draw the attractive areas of the high voltage transmission lines, transmission line power conductors, shielding wires and lightning leader were modeled. Different parameters were considered such as lightningslope, ground slope and wind on lightning attractive areas. From the calculated results, the power conductors voltages affected on attractive areas around power conductors and shielding wires. For negative lightning leader, the attractive area around the transmission line power conductor increased around power conductors stressed by positives voltage and decreased around power conductors stressed by negative voltage. In spite of this, the attractivearea of the transmission line shielding wire increasedaround the shielding wire above the power conductor stressed by the positive voltage and decreased around the shielding wire above the power conductor stressed by negative voltage. The attractive areas around power conductors and shielding wires were affected by the surrounding conditions, such as lightning leader slope, ground slope. The AC voltage of the transmission lines made the shielding areas changing with time.

Implementation and Verification of Distance Relay Models for Real Time Digital Simulator (실시간 전력계통 시뮬레이터를 이용한 보호계전모델 개발)

  • Lee, Joo-Hun;Yoon, Yong-Beum;Cha, Seung-Tae;Lee, Jin;Choe, Jong-Woon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제52권7호
    • /
    • pp.393-400
    • /
    • 2003
  • This paper discusses how to implement and verify a software model of the digital relay that can be added to real time digital simulator(RTDS) model library and is then subjected to the same outputs as the actual relay. The software model is stand-alone and can be used with real relays. It is also possible to conduct interactive real-time tests when the system effects of the relay action need to be investigated. The characteristics of mho type and the quadrilateral type, which is commonly used in recently developed relays, are modeled in this paper. Single circuit line and double circuit line system are used for model verification. The transmission lines are each 100 km in length and are modeled as distributed parameter lines but not frequency dependent. The transmission lines in the single circuit system are modeled as ideally transposed line. The mutual coupling data with the parallel line was taken account in the transmission lines for the double circuit system. The main CTs and PTs are included and operated in their linear region during the tests. For the purpose of testing the relay model accuracy the faults have been applied at various points on the protected line. Its accuracy is assessed against theoretical values.

Technology and Design Standards of 765kV 1cct Transmission Line (765kV 1회선 송전선로 기술기준 및 설계방안)

  • Sim, Soon-Bo;Min, Byeong-Wook;Park, K.H.;Jo, C.I.;Kim, J.Y.;Sin, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.80-82
    • /
    • 2002
  • To solve the difficulty in obtaining transmission routes and substation sites. increase the transmission capacity between generation sites and load centers. and enhance the stability of the power system. we have constructed and operated the 765kV double circuit transmission line(hereunder T/L) from the Dangjin thermal power plant and the Uljin nuclear power plant to the metropolitan. It makes it possible for us to accumulate know-how of the 765kV system that is the highest operating system level in Asia. As the second 765kV project, we are going to construct the 765kV single circuit T/L between Ansung and Gap yung. Because of the different electrical and mechanical characteristics. we are in need of different design technology. This paper presents the optimal design of 765kV single circuit transmission line after due consideration about the arrangement of conductors. the shape of a tower, insulation, etc.

  • PDF

Calculation of the induced voltage and current for a human and a car close to 765 kV AC double circuit transmission line (765 kV 교류 2회선 송전선 하의 인체 및 자동차에 유도되는 전압, 전류 계산)

  • 민석원;김응식;명성호;이병윤;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • 제45권2호
    • /
    • pp.301-309
    • /
    • 1996
  • This paper estimates the electric field effect near 765[kV] AC double transmission line with numerical data. The induced voltage and current of a human and car under who kinds of phase arrangement are calculated when each of two objects is insulated or grounded. When the calculated results of the low-reactance and superposition phase arrangement are compared, it is proved that the induced voltage and current of the former are about 30 [%] smaller than that of the latter. The induced current of a human and car are less than 0.5[mA] which is about 10[%] less than that of the American National Standard Code. Also the induced voltage and current of dead lines by other live lines are calculated. Finally the effective number and position of shield wires to reduce the field in ground level are considered. charge simulation method and surface charge method are used to simulate the 2 or 3 dimensional transmission line model respectively.

  • PDF

Dynamic Characteristics Test and Test Model Establish on Double Circuit for Protective Relay Test Using Real Time Digital Simulator (송전선보호계전기 시험을 위한 RTDS센서의 2회선 송전선로 Model구축 및 동특성시험)

  • Jung, Chang-Ho;Lee, Jae-Gyu;Yoon, Nam-Seon;Ahn, Bok-Shin;Kim, Sok-Il
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1038-1040
    • /
    • 1997
  • This paper describes dynamic characteristics test of distance relay and current differential relay using Real Time Digital Simulator on double circuit transmission line. First, The double circuit T/L modeling on RTDS was proposed and the results from the proposed model were compared with those of PSS/E. This comparison shows the possibility of dynamic test using the RTDS. The relay included about 20 test items which are apt to include maloperation of protective relays in critical situations.

  • PDF

Development of the Technical Calculation System for Transmission Line in Myanmar (미얀마 송전선로 설계 기술계산시스템 개발)

  • Baik, Seung-Do;Min, Byeong-Wook;Kim, Jong-Hwa;Shin, Tai-Woo;Kim, Sae-Hyun;Park, Jae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.632-634
    • /
    • 2005
  • Korea takes part in overseas business by use of accumulated advanced technology through construction of the worlds first 765kV double circuit transmission system designed with pure local technology. 'Development Study on the Power System Network Analysis in Myanmar' was received in the year 2001 and was completed in the year 2002. The following project,'Feasibility Study and Basic Designs for the 500kV Transmission System in Myanmar' has been in progress since January, 2004. With regards to this project the master plan for the Myanmar long term power system was submitted in January 2005, and now the basic designs for the 500kV transmission system construction are in progress. Technical data for the design of the transmission line is calculated using a very complex numerical formula that is almost impossible to be completed by hand. So the transmission technical calculation system was developed to calculate and support Myanmar technical data for the design of transmission line with respect to factors such as wind prossure load, tower design data conductor design data and insulator design data on the basis of weather conditions for the Myamar transmission line design area of the Myanmar 500kV trans- mission line construction basic design.

  • PDF