• Title/Summary/Keyword: Dose reconstruction

Search Result 139, Processing Time 0.026 seconds

Image Reconstruction of Sinogram Restoration using Inpainting method in Sparse View CT (Sparse view CT에서 inpainting 방법을 이용한 사이노그램 복원의 영상 재구성)

  • Kim, Daehong;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.655-661
    • /
    • 2017
  • Sparse view CT has been widely used to reduce radiation dose to patient in radiation therapy. In this work, we performed sinogram restoration from sparse sampling data by using inpainting method for simulation and experiment. Sinogram restoration was performed in accordance with sampling angle and restoration method, and their results were validated with root mean square error (RMSE) and image profiles. Simulation and experiment are designed to fan beam scan for various projection angles. Sparse data in sinogram were restored by using linear interpolation and inpainting method. Then, the restored sinogram was reconstructed with filtered backprojection (FBP) algorithm. The results showed that RMSE and image profiles were depended on the projection angles and restoration method. Based on the simulation and experiment, we found that inpainting method could be improved for sinogram restoration in comparison to linear interpolation method for estimating RMSE and image profiles.

Effect of Variable Scanning Protocols on the Pre-implant Site Evaluation of the Mandible in Reformatted Computed Tomography (영상재구성 전산화 단층촬영에서 촬영조건의 변화가 하악골 술전 임플란트 부위 평가에 미치는 영향)

  • Kim Kee-Deog;Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.21-32
    • /
    • 1999
  • Purpose: To evaluate the effect of variable scanning protocols of computed tomography for evaluation of pre-implant site of the mandible through the comparison of the reformatted cross-sectional images of helical CT scans obtained with various imaging parameters versus those of conventional CT scans. Materials and Methods: A dry mandible was imaged using conventional nonoverlapped CT scans with 1 mm slice thickness and helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5. 2.0, 2.5 and 3.0. All helical images were reconstructed at reconstruction interval of 1 mm. DentaScan reformatted images were obtained to allow standardized visualization of cross-sectional images of the mandible. The reformatted images were reviewed and measured separately by 4 dental radiologists. The image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal were evaluated and the distance between anatomic structures were measured by 4 dental radiologists. Results: On image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal and in horizontal measurement. there was no statistically significant difference among conventional and helical scans with pitches of 1.0. 1.5 and 2.0. In vertical measurement. there was no statistically significant difference among the conventional and all imaging parameters of helical CT scans with pitches of 1.0, 1.5, 2.0, 2.5 and 3.0. Conclusion: The images of helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5 and 2.0 are as good as those of conventional CT scans with 1 mm slice thickness for evaluation of predental implant site of the mandible. Considering the radiation dose and patient comfort, helical CT scans with 1 mm slice thickness and pitch of 2.0 is recommended for evaluation of pre-implant site of the mandible.

  • PDF

A Study on Characteristics of A Diode Radiation Sensor for Portal Image of Therapy Radiation (치료방사선 Portal Image를 위한 다이오드 방사선 센서의 특성에 관한 연구)

  • Lee, Dong-Hun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.11-20
    • /
    • 1996
  • In this paper, the characteristics of therapy radiation diode sensors have been studied by using therapy radiation from the MM22 microtron accelerator. The linearity, reproducibility and error ratio were measured for feasibility as a radiation detector. Energy dependence, sensitivity change after a amount of irradiation and output value according to a number of diodes were also measured for same purpose. We have formed pulse shaping of diode signal with nuclear instruments for portal image reconstruction. The percent depth dose ratio according to field size and depth was compared with that of the detector of a ion chamber. Using thirteen silicon diodes, we can directly read diode outputs on a computer monitor after A/D conversion with 16 channels analog to digital conversion board with 12 bit resolution. The possibility for portal image with diodes has been suggested from output comparison between output value with a human phantom and that without a human phantom.

  • PDF

Derivation of External Exposure Characteristics of Industrial Radiography Based on Empirical Evidence

  • Cho, Junik;Kim, Euidam;Kwon, Tae-Eun;Chung, Yoonsun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.93-98
    • /
    • 2022
  • Background: This study aims to derive the characteristics of each work type for industrial radiography based on empirical evidence through expert advice and a survey of radiation workers of various types of industrial radiography. Materials and Methods: According to a Korean report, work types of industrial radiography are classified into indoor tests, underground pipe tests, tests in a shielded room (radiographic testing [RT] room test), outdoor field tests, and outdoor large structure tests. For each work type, exposure geometry and radiation sources were mainly identified through the expert advice and workers' survey as reliable empirical evidence. Results and Discussion: The expert advice and survey results were consistent as the proportion of the work types were high in the order of RT room test, outdoor large structure test, underground pipe test, outdoor field test, and indoor test. The outdoor large structure test is the highest exposure risk work type in the industrial radiography. In most types of industrial radiography, radiation workers generally used 192Ir as the main source. In the results of the survey, the portion of sources was high in the order of 192Ir, X-ray generator, 60Co, and 75Se. As the exposure geometry, the antero-posterior geometry is dominant, and the rotational and isotropic geometry should be also considered with the work type. Conclusion: In this study, through expert advice and a survey, the external exposure characteristics for each work type of industrial radiography workers were derived. This information will be used in the reconstruction of organ dose for health effects assessment of Korean radiation workers.

Evaluation of Image Quality in Micro-CT System Using Constrained Total Variation (TV) Minimization (Micro-CT 시스템에서 제한된 조건의 Total Variation (TV) Minimization을 이용한 영상화질 평가)

  • Jo, Byung-Du;Choi, Jong-Hwa;Kim, Yun-Hwan;Lee, Kyung-Ho;Kim, Dae-Hong;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.252-260
    • /
    • 2012
  • The reduction of radiation dose from x-ray is a main concern in computed tomography (CT) imaging due to the side-effect of the dose on human body. Recently, the various methods for dose reduction have been studied in CT and one of the method is a iterative reconstruction based on total variation (TV) minimization at few-views data. In this paper, we evaluated the image quality between total variation (TV) minimization algorithm and Feldkam-Davis-kress (FDK) algorithm in micro computed tomography (CT). To evaluate the effect of TV minimization algorithm, we produced a cylindrical phantom including contrast media, water, air inserts. We can acquire maximum 400 projection views per rotation of the x-ray tube and detector. 20, 50, 90, 180 projection data were chosen for evaluating the level of image restoration by TV minimization. The phantom and mouse image reconstructed with FDK algorithm at 400 projection data used as a reference image for comparing with TV minimization and FDK algorithm at few-views. Contrast-to-noise ratio (CNR), Universal quality index (UQI) were used as a image evaluation metric. When projection data are not insufficient, our results show that the image quality of reconstructed with TV minimization is similar to reconstructed image with FDK at 400 view. In the cylindrical phantom study, the CNR of TV image was 5.86, FDK image was 5.65 and FDK-reference was 5.98 at 90-views. The CNR of TV image 0.21 higher than FDK image CNR at 90-views. UQI of TV image was 0.99 and FDK image was 0.81 at 90-views. where, the number of projection is 90, the UQI of TV image 0.18 higher than FDK image at 90-views. In the mouse study UQI of TV image was 0.91, FDK was 0.83 at 90-views. the UQI of TV image 0.08 higher than FDK image at 90-views. In cylindrical phantom image and mouse image study, TV minimization algorithm shows the best performance in artifact reduction and preserving edges at few view data. Therefore, TV minimization can potentially be expected to reduce patient dose in clinics.

Usefulness of volumetric BMD measurement by using low dose CT image acquired on L-spine Bone SPECT/CT (L-spine Bone SPECT/CT에서 획득된 저선량 CT 영상을 이용한 용적 골밀도 결과의 유용성)

  • Hyunsoo Ko;Soonki Park;Eunhye Kim;Jongsook Choi;Wooyoung Jung;Dongyun Lee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.99-109
    • /
    • 2023
  • Purpose: CT scan makes up for the weak point of the nuclear medicine image having a low resolution and also were used for attenuation correction on image reconstruction. Recently, many studies try to make use of CT images additionally, one of them is to measure the bone mineral density(BMD) using Quantitative CT(QCT) software. BMD exams are performed to scan lumbar and femur with DXA(Dual-Energy X-Ray Absorptiometry) in order to diagnose bone disease such as osteopenia, osteoporosis. The purpose of this study is to identify the usefulness of QCT_BMD analyzed with low dose CT images on L-spine Bone SPECT/CT comparing with DXA_BMD. Materials and Methods: Fifty five women over 50 years old (mean 66.4 ± 9.1) who took the both examinations(L-spine Bone SPECT/CT with SIEMENS Intevo 16 and DXA scan with GE Lunar prodigy advance) within 90 days from April 2017 to July 2022, BMD, T-score and disease classification were analyzed. Three-dimensional BMD was analyzed with low dose CT images acquired on L-spine Bone SPECT/CT scan on Mindways QCT PROTM software and two-dimensional BMD was analyzed on DXA scan. Basically, Lumbar 1-4 were analyzed and the patients who has lesion or spine implants on L-spine were excluded for this study. Pearson's correlation analysis was performed in BMD and T-score, chi-square test was performed in disease classification between QCT and DXA. Results: On 55 patients, the minimum of QCT_BMD was 18.10, maximum was 166.50, average was 82.71 ± 31.5 mg/cm3. And the minimum of DXA-BMD was 0.540, maximum was 1.302, average was 0.902 ± 0.201 g/cm2, respectively. The result shows a strong statistical correlation between QCT_BMD and DXA_BMD(p<0.001, r=0.76). The minimum of QCT_T-score was -5.7, maximum was -0.1, average was -3.2 ± 1.3 and the minimum of DXA_T-score was -5.0, maximum was 1.7, average was -2.0 ± 1.3, respectively. The result shows a statistical correlation between QCT T-score and DXA T-score (p<0.001, r=0.66). On the disease classification, normal was 5, osteopenia was 25, osteoporosis was 25 in QCT and normal was 10, osteopenia was 25, osteoporosis was 20 in DXA. There was under-estimation of bone decrease relatively on DXA than QCT, but there was no significant differences statistically by chi-square test between QCT and DXA. Conclusion: Through this study, we could identify that the QCT measurement with low dose CT images QCT from L-Spine Bone SPECT/CT was reliable because of a strong statistical correlation between QCT_BMD and DXA_BMD. Bone SPECT/CT scan can provide three-dimensional information also BMD measurement with CT images. In the future, rather than various exams such as CT, BMD, Bone scan are performed, it will be possible to provide multipurpose information via only SPECT/CT scan. In addition, it will be very helpful clinically in the sense that we can provide a diagnosis of potential osteoporosis, especially in middle-aged patients.

A Study of Various Filter Setups with FBP Reconstruction for Digital Breast Tomosynthesis (디지털 유방단층영상합성법의 FBP 알고리즘 적용을 위한 다양한 필터 조합에 대한 연구)

  • Lee, Haeng-Hwa;Kim, Ye-Seul;Lee, Youngjin;Choi, Sunghoon;Lee, Seungwan;Park, Hye-Suk;Kim, Hee-Joung;Choi, Jae-Gu;Choi, Young-Wook
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.271-280
    • /
    • 2014
  • Recently, digital breast tomosynthesis (DBT) has been investigated to overcome the limitation of conventional mammography for overlapping anatomical structures and high patient dose with cone-beam computed tomography (CBCT). However incomplete sampling due to limited angle leads to interference on the neighboring slices. Many studies have investigated to reduce artifacts such as interference. Moreover, appropriate filters for tomosynthesis have been researched to solve artifacts resulted from incomplete sampling. The primary purpose of this study is finding appropriate filter scheme with FBP reconstruction for DBT system to reduce artifacts. In this study, we investigated characteristics of various filter schemes with simulation and prototype digital breast tomosynthesis under same acquisition parameters and conditions. We evaluated artifacts and noise with profiles and COV (coefficinet of variation) to study characteristic of filter. As a result, the noise with parameter 0.25 of Spectral filter reduced by 10% in comparison to that with only Ramp-lak filter. Because unbalance of information reduced with decreasing B of Slice thickness filter, artifacts caused by incomplete sampling reduced. In conclusion, we confirmed basic characteristics of filter operations and improvement of image quality by appropriate filter scheme. The results of this study can be utilized as base in research and development of DBT system by providing information that is about noise and artifacts depend on various filter schemes.

Evaluation of the reconstruction of image acquired from CT simulator to reduce metal artifact (Metal artifact 감소를 위한 CT simulator 영상 재구성의 유용성 평가)

  • Choi, Ji Hun;Park, Jin Hong;Choi, Byung Don;Won, Hui Su;Chang, Nam Jun;Goo, Jang Hyun;Hong, Joo Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.191-197
    • /
    • 2014
  • Purpose : This study presents the usefulness assessment of metal artifact reduction for orthopedic implants(O-MAR) to decrease metal artifacts from materials with high density when acquired CT images. Materials and Methods : By CT simulator, original CT images were acquired from Gammex and Rando phantom and those phantoms inserted with high density materials were scanned for other CT images with metal artifacts and then O-MAR was applied to those images, respectively. To evaluate CT images using Gammex phantom, 5 regions of interest(ROIs) were placed at 5 organs and 3 ROIs were set up at points affected by artifacts. The averages of standard deviation(SD) and CT numbers were compared with a plan using original image. For assessment of variations in dose of tissue around materials with high density, the volume of a cylindrical shape was designed at 3 places in images acquired from Rando phantom by Eclipse. With 6 MV, 7-fields, $15{\time}15cm2$ and 100 cGy per fraction, treatment planning was created and the mean dose were compared with a plan using original image. Results : In the test with the Gammex phantom, CT numbers had a few difference at established points and especially 3 points affected by artifacts had most of the same figures. In the case of O-MAR image, the more reduction in SD appeared at all of 8 points than non O-MAR image. In the test using the Rando Phantom, the variations in dose of tissue around high density materials had a few difference between original CT image and CT image with O-MAR. Conclusion : The CT images using O-MAR were acquired clearly at the boundary of tissue around high density materials and applying O-MAR was useful for correcting CT numbers.

Development of Artificial Pulmonary Nodule for Evaluation of Motion on Diagnostic Imaging and Radiotherapy (움직임 기반 진단 및 치료 평가를 위한 인공폐결절 개발)

  • Woo, Sang-Keun;Park, Nohwon;Park, Seungwoo;Yu, Jung Woo;Han, Suchul;Lee, Seungjun;Kim, Kyeong Min;Kang, Joo Hyun;Ji, Young Hoon;Eom, Kidong
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Previous studies about effect of respiratory motion on diagnostic imaging and radiation therapy have been performed by monitoring external motions but these can not reflect internal organ motion well. The aim of this study was to develope the artificial pulmonary nodule able to perform non-invasive implantation to dogs in the thorax and to evaluate applicability of the model to respiratory motion studies on PET image acquisition and radiation delivery by phantom studies. Artificial pulmonary nodule was developed on the basis of 8 Fr disposable gastric feeding tube. Four anesthetized dogs underwent implantation of the models via trachea and implanted locations of the models were confirmed by fluoroscopic images. Artificial pulmonary nodule models for PET injected $^{18}F$-FDG and mounted on the respiratory motion phantom. PET images of those acquired under static, 10-rpm- and 15-rpm-longitudinal round motion status. Artificial pulmonary nodule models for radiation delivery inserted glass dosemeter and mounted on the respiratory motion phantom. Radiation delivery was performed at 1 Gy under static, 10-rpm- and 15-rpm-longitudinal round motion status. Fluoroscpic images showed that all models implanted in the proximal caudal bronchiole and location of models changed as respiratory cycle. Artificial pulmonary nodule model showed motion artifact as respiratory motion on PET images. SNR of respiratory gated images was 7.21. which was decreased when compared with that of reference images 10.15. However, counts of respiratory images on profiles showed similar pattern with those of reference images when compared with those of static images, and it is assured that reconstruction of images using by respiratory gating improved image quality. Delivery dose to glass dosemeter inserted in the models were same under static and 10-rpm-longitudinal motion status with 0.91 Gy, but dose delivered under 15-rpm-longitudinal motion status was decreased with 0.90 Gy. Mild decrease of delivered radiation dose confirmed by electrometer. The model implanted in the proximal caudal bronchiole with high feasibility and reflected pulmonary internal motion on fluoroscopic images. Motion artifact could show on PET images and respiratory motion resulted in mild blurring during radiation delivery. So, the artificial pulmonary nodule model will be useful tools for study about evaluation of motion on diagnostic imaging and radiation therapy using laboratory animals.

The Usefulness of Q.Clear Technique in PET / CT (PET/CT 검사에서 Q.Clear 기법의 유용성에 대한 고찰)

  • Choi, Yong Hoon;Kim, Jung Yul;Choi, Young Sook;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.31-36
    • /
    • 2017
  • Purpose Recently, the performance of PET/CT scanner has been improved and various techniques have been developed to increase the image quality such as Sensitivity and Resolution. The purpose of this study is to evaluate the usefulness of Q.Clear (a fully convergent iterative reconstruction) technique of GE Discovery IQ equipment to enhance the image quality. Materials and Methods All scans were acquired by Discovery IQ (GE Healthcare, MI, USA). In NEMA IEC Body Phantom test, Background to Hot-sphere (10 mm, 13 mm, 17 mm, 22 mm) ratio was 1:4 and scan time was 3 minutes. The images were reconstructed by VPHDs (VUE Point High-Definition + SharpIR) and Q.Clear to evaluate each Contrast. We injected 18F-FDG 187 M㏃ to PET/SPECT Performance Phantom. And then it was scanned for 4 minutes to evaluate Resolution and Uniformity. T-test statistical analysis was performed on SUVmax of small lesions less than 2 cm in 100 clinical patients regardless of disease type. Results In the NEMA IEC Body Phantom, the Contrast was $63.6{\pm}5.7%$ (VPHDs) and $75{\pm}4.8%$ (Q.Clear). In the PET/SPECT Performance Phantom, the Resolution was 9.2 mm (VPHDs) and 7.3 mm (Q.Clear). Uniformity of Q.Clear was 10.8% better than VPHDs. T-test statistic of the clinical patients showed a significant difference of p value of 0.021. Conclusion Both the phantom test and the clinical results showed that the quality of the image was improved in Q.Clear was applied. The SUVmax was highly measured in Q.Clear and the lesions were clearly distinguished visually. Therefore Q.Clear can be useful in various aspects such as dose-reduction, patients evaluation and image analysis.

  • PDF