Evaluation of the reconstruction of image acquired from CT simulator to reduce metal artifact

Metal artifact 감소를 위한 CT simulator 영상 재구성의 유용성 평가

  • Choi, Ji Hun (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Park, Jin Hong (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Choi, Byung Don (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Won, Hui Su (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Chang, Nam Jun (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Goo, Jang Hyun (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Hong, Joo Wan (Department of Radiation Oncology, Seoul national university bundang hospital)
  • 최지훈 (분당서울대학교병원 방사선종양학과) ;
  • 박진홍 (분당서울대학교병원 방사선종양학과) ;
  • 최병돈 (분당서울대학교병원 방사선종양학과) ;
  • 원희수 (분당서울대학교병원 방사선종양학과) ;
  • 장남준 (분당서울대학교병원 방사선종양학과) ;
  • 구장현 (분당서울대학교병원 방사선종양학과) ;
  • 홍주완 (분당서울대학교병원 방사선종양학과)
  • Received : 2014.05.30
  • Accepted : 2014.12.02
  • Published : 2014.12.30

Abstract

Purpose : This study presents the usefulness assessment of metal artifact reduction for orthopedic implants(O-MAR) to decrease metal artifacts from materials with high density when acquired CT images. Materials and Methods : By CT simulator, original CT images were acquired from Gammex and Rando phantom and those phantoms inserted with high density materials were scanned for other CT images with metal artifacts and then O-MAR was applied to those images, respectively. To evaluate CT images using Gammex phantom, 5 regions of interest(ROIs) were placed at 5 organs and 3 ROIs were set up at points affected by artifacts. The averages of standard deviation(SD) and CT numbers were compared with a plan using original image. For assessment of variations in dose of tissue around materials with high density, the volume of a cylindrical shape was designed at 3 places in images acquired from Rando phantom by Eclipse. With 6 MV, 7-fields, $15{\time}15cm2$ and 100 cGy per fraction, treatment planning was created and the mean dose were compared with a plan using original image. Results : In the test with the Gammex phantom, CT numbers had a few difference at established points and especially 3 points affected by artifacts had most of the same figures. In the case of O-MAR image, the more reduction in SD appeared at all of 8 points than non O-MAR image. In the test using the Rando Phantom, the variations in dose of tissue around high density materials had a few difference between original CT image and CT image with O-MAR. Conclusion : The CT images using O-MAR were acquired clearly at the boundary of tissue around high density materials and applying O-MAR was useful for correcting CT numbers.

목 적 : CT simulation 시 고 밀도 인공물에 의해 발생된 metal artifact는 주변조직의 관찰능력 감소 및 CT number 변화에 영향을 미치게 된다. 본 연구에서는 CT 촬영 시 Metal Artifact Reduction for Orthopedic implants(O-MAR)의 유용성을 평가해 보고자 한다. 대상 및 방법 : CT simulator를 이용하여 Gammex phantom과 Rando phantom의 original 영상, 고 밀도 인공물을 삽입 후 획득한 non O-MAR 영상과 O-MAR 적용 영상을 획득하였다. CT 영상 평가를 위해 Gammex phantom CT 영상 내 5개 조직과 artifact 영향을 직접 받는 3개 지점에 관심영역(region of interest, ROI)을 각각 설정하고, CT number와 노이즈(standard deviation, SD)를 평균값으로 비교, 분석하였다. 고 밀도 인공물 주변조직의 CT number 변화에 따른 선량변화 확인을 위해 전산화치료계획시스템 Eclipse를 이용하여 Rando phantom CT 영상 3곳에 원기둥 체적을 형성하였다. 치료계획은 6 MV 광자선, 7개 조사면, 조사야 $15{\time}15cm$, 1회당 처방선량 100 cGy를 적용하여 수립하고 평균선량을 비교, 분석하였다. 두 실험 모두 original 영상을 기준으로 분석하였다. 결 과 : Gammex phantom을 이용한 영상평가 실험에서 각 영상별 5개 조직의 CT number 차이는 작았으며, artifact 영향을 직접 받는 3개 지점은 O-MAR 적용 시 original 영상과 유사하게 나타났다. 그리고 O-MAR 적용 시 8개 지점의 SD는 non O-MAR 영상보다 모두 감소되었다. Rando phantom을 이용한 선량변화 실험 또한 O-MAR 적용 시 original 영상과 유사하게 나타났다. 결 론 : O-MAR 적용 시 고 밀도 인공물 artifact로 인한 영상 왜곡 및 SD 감소로 영상의 질이 향상되었으며 CT number 보정에 유용하였다. 이는 체표윤곽도(contour) 생성 및 치료계획 수립에 이점이 있을 것이라 사료된다.

Keywords

References

  1. Joemai RMS, Bruin PW, Veldkamp WJH, Geleijns J: Metal artifact reduction for CT: Development, implementation, and clinical comparison of a generic and a scanner-specific technique. Med Phys 2012;39(2):1125-1132 https://doi.org/10.1118/1.3679863
  2. Lewis M, Toms AP, Reid K, Bugg W: CT metal artefact reduction of total knee prostheses using angled gantry multiplanar reformation. The knee 2010;17:279-282 https://doi.org/10.1016/j.knee.2010.02.007
  3. Li H, Noel C, Chen H, Li HH: Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med Phys 2012;39(12):7507-7517 https://doi.org/10.1118/1.4762814
  4. Webster GJ, Rowbottom CG, Mackay RI: Evaluation of the impact of dental artefacts on intensity-modulated radiotherapy planning for the head and neck. Radiother Oncol 2009;93:553-558 https://doi.org/10.1016/j.radonc.2009.10.006
  5. Lee CH, Yun IH, Hong D, Back GM, Kwon GT: Evaluation of using Gantry Tilt Scan to Head & Neck Patients during Radiation Therapy for Reduction of Metal Artifact. Korean Soc Ther Radiol Oncol 2010;22(2):85-95
  6. Zhao S, Robertson DD, Wang G, Whiting B, Bae KT: X-ray CT Metal Artifact Reduction Using Wavelets: An Application for Imaging Total Hip Prostheses. IEEE 2000;19(12):1238-1247
  7. Bal M, Spies L: Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. Med Phys 2006;33(8):2852-2859 https://doi.org/10.1118/1.2218062
  8. Matsufuji N, Tomura H, Futami Y, et al.: Relationship between CT number and electron density, scatter angle and nuclear reaction for hadron-therapy treatment planning. Phys Med Biol 1998;43(11):3261-3275 https://doi.org/10.1088/0031-9155/43/11/007
  9. Judy PF, et al.: AAPM report NO, 1: Phantoms for performance evaluation and quality assurance of CT scanner. 1977
  10. Philips Healthcare System: Metal Artifact Reduction for Orthopedic Implants(O-MAR). 2013
  11. 전호상, 박달, 남지호 등: MV-CT를 이용한 방사선치료 계획용 kV-CT의 금속 왜곡 보정 시스템 개발. 2012