• Title/Summary/Keyword: Dose planning

Search Result 718, Processing Time 0.024 seconds

Dosimetry of Irregular Field Using Thermoluminescence Dosimetry (부정형 조사면에서의 TLD를 이용한 방사선 흡수선량 측정)

  • Lee, Jong-Young;Park, Kyung-Ran;Kim, Kye-Jun
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.263-267
    • /
    • 1994
  • In clinical radiotherapy, the use of wide and irregular field techniques frequently results in considerable tumor dose inhomogeneity because of, the variation in physical characteristics of irradiated volumes. This report describes an analysis of the dosimetry of the irregular fields such as radiation fields for Hodgkin's disease(mantle field), esophageal cancer, and lung cancer when a 6 MV and a 15 MV linear accelerators are utilized. Doses were measured in a Rando phantom using methods of thermoluminescence dosimetry(TLD), and were calculated by radiotherapy planning computer system with the Clarkson's method for calculation of a irregular field. A dose variation of $5-22\%,\;6-9\%,\;6-14\%$ were found in the mantle field, esophageal cancer field, lung cancer field respectively. Higher doses occurred in the superior portion of the irregular field. The sites of maximum dose variation were the supraclavicular and the upper spinal cord region. To adjust for these substantial differences, a compensator or a shrinking field technique should be adopted.

  • PDF

Quality Assurance for High Dose Rate Brachytherapy (고선량율 근접치료의 정도관리)

  • Bang, Dong-Wan;Cho, Chung-Hee;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.30-44
    • /
    • 1998
  • Accurate delivery of doses using a high dose rate(HDR) brachytherapy, remote afterloading system(RALS) depends on knowing the strength of the radioactive source at the time of treatment, the precision and consistency of the timer, and the ability of the unit to position the source at the proper dwell location along the applicator. Periodic Quality Assurance(QA) on HDR machines is a part of the standard protocol of any user. The safety of the patient & staff, positional accuracy, temporal accuracy, and dose delivery accuracy are periodically(weekly, quarterly, monthly) estimated using HDR source(Ir-192), treatment planning devices, measurement devices, and overall treatment devices with regard to treatment delivery. The overall measurement results are estimated successfully and assessed its clinical significance. As a result, our HDR brachytherapy units has been very accurate until now. The QA program protocol permits routine clinical use and provides a high confidence level in the accurate operation of HDR units. Therefore, regular QA of HDR brachytherapy is essential for successful treatment.

  • PDF

Dosimetric Evaluation of an Automatically Converted Radiation Therapy Plan between Radixact Machines

  • Lee, Mi Young;Kang, Dae Gyu;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.153-162
    • /
    • 2020
  • Purpose: We aim to evaluate the accuracy and effectiveness of an automatically converted radiation therapy plan between Radixact machines by comparing the original plan with the transferred plan. Methods: The study involved a total of 20 patients for each randomly selected treatment site who received radiation treatment with Radixact. We set up the cheese phantom (Gammex RMI, Middleton, WI, USA) with an Exradin A1SL ion chamber (Standard Imaging, Madison, WI, USA) and GAFCHROMIC EBT3 film (International Specialty Products, Wayne, NJ, USA) inserted. We used three methods to evaluate an automatically converted radiation therapy plan using the features of the Plan transfer. First, we evaluated and compared Planning target volume (PTV) coverage (homogeneity index, HI; conformity index, CI) and organs at risk (OAR) dose statistics. Second, we compared the absolute dose using an ion chamber. Lastly, we analyzed gamma passing rates using film. Results: Our results showed that the difference in PTV coverage was 1.72% in HI and 0.17% in CI, and majority of the difference in OAR was within 1% across all sites. The difference (%) in absolute dose values was averaging 0.74%. In addition, the gamma passing rate was 99.64% for 3%/3 mm and 97.08% for 2%/2 mm. Conclusions: The Plan transfer function can be reliably used in appropriate situations.

The simulation on dose distributions of high energy electron beams. (고에너지 전자선의 선량분포에 관한 모의계산)

  • Lee, Jeong-Ok;Kim, Seung-Kon
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.83-88
    • /
    • 2002
  • This work was peformed as a basic research in the application of Monte Carlo methods for planning treatments by electron beams. Depth doses, beam profiles and isodose curves in water phantoms were calculated for monoenergetic electron beams with 6, 9, and 12 MeV. The calculated depth doses and beam profiles are almost consistent with their known values. If allowances are made for distributions in electron beam energies, we are confident that the agreement between our calculations and measured values will significantly improve. In conclusion, our work shows that similar Monte Carlo calculations could be applied for geometries In human body in planning electron beam treatments.

  • PDF

A Study on the Changed by Spatial Structure Element for the Space Planning of Apartment Complex (아파트 단지 계획을 위한 공간구성요소의 변화 분석)

  • 오진안
    • Journal of the Korean housing association
    • /
    • v.7 no.2
    • /
    • pp.91-98
    • /
    • 1996
  • View From the point of change of the land of the land of the nation. The advancement in the modern civilization has led to building many apartments characterized by high buildings and building complexes due to population concentration into big cities. This tendency not only causes serious problems in terms of city images but also produces considerable discords in the matter of harmonized beauty of the complex itself.At the stage of space planning for the apartment complexes only economic and functional aspects were considered. So in many cases the space, which dose not contribute to environmental improvement which must go in parallel with the quantity increase of apartments and improvements of welfare and living standards of the apartment inhabitants.

  • PDF

A Novel Drug Delivery Approach to Olanzapine Orally Dispersible Tablet (ODT) in the Phase of Schizophrenia and Its Pharmacokinetics

  • Kim, Hyun-Jo;Park, Jeong-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.297-304
    • /
    • 2010
  • The present work focuses on preparation of olanzapine, orally dispersing tablets by direct compression method. Effect of super disintegrant crospovidone, disintegration time, drug content on in vitro release has been studied. A factorial design was employed in formulating a prompt dispersible tablet. The selected independent variables crospovidone and fmelt showed significant effect on dependent variables i.e. disintegration time and percent drug dissolved. Disintegration time and percent drug dissolved decreased with increase in the level of crospovidone. The similarity factor $f_2$ was found to be 97.48 for the developed formulation indicating the release was similar to that of the marketed formulation. Pharmacokinetics of olanzapine after single-dose oral administration of orally disintegrating tablet in normal volunteers were evaluated and the results showed that PK parameters (Cmax, Tmax, AUC) of the designed ODT matrix were similar to those of commercial product, Zyprexa Zydis$^{(R)}$ as a reference.

Usefulness evaluation of Hybrid planning through dosimetric comparision of Three Dimensinal Conformal Radiation Radiotherapy and Hybrid planning for left breast cancer (유방암 환자의 방사선 치료시 Energy와 Wedge를 combine한 Hybrid plan의 유용성 평가)

  • Chae, Moon Ki;Park, Byung Soo;Ahn, Jong Ho;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • Purpose : To compare the dosimetry for the left breast cancer treatment between three dimensional conformal radiation radiotherapy (3D-CRT) and Hybrid planning and to estimate usefulness of Hybrid planning Materials and Methods : Five patients with left breast cancer were included in the study. They were planned using several different radiotherapy techniques including: 1)open rectangular field, 2)tangential wedge-based field 3)field in field, 4)hybrid planning(energy, wedge combine). For each patient planning was using Light Speed RT-16 CT and PINNACLE planning system-ver.9.2. Hybrid plan was made using same system and using the same targets and optimization goals. We comparing the Homogeneity Index(HI), normal organs at the does-volume histogram(DVH) Results : In all plans, the Homogeneity Index(HI) of Hybrid planning was significantly better than other. Dose comparison of HI= 2D-RT:38.32, TW:38.32, FIF:29.22, HYBRID:30.57. 2D-RT, TW, FIF Hybrid$V_{75_-lung}$=112.33, 125.14, 121.3, 123.78. $V_{50_-lung}$=155.43, 159.62, 157.96, 159.06. $V_{25_-lung}$=199.86, 200.22, 198.65, 200.31. $V_{50_-heart}$=26.07, 27.1, 26.85, 27.17 $V_{30_-heart}$=33.71, 34.37, 34.15, 34.65 Conclusion : In summary, 3D-CRT, Hybrid planning techniques were found to have acceptableCTV coverage in our study. However the Hybrid planning increased radiation dose exposure to normal tissue. If you apply for treatment of inhomogeneity areas like lung, For best results will be achieved.

Influence of different boost techniques on radiation dose to the left anterior descending coronary artery

  • Park, Kawngwoo;Lee, Yongha;Cha, Jihye;You, Sei Hwan;Kim, Sunghyun;Lee, Jong Young
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.242-249
    • /
    • 2015
  • Purpose: The purpose of this study is to compare the dosimetry of electron beam (EB) plans and three-dimensional helical tomotherapy (3DHT) plans for the patients with left-sided breast cancer, who underwent breast conserving surgery. Materials and Methods: We selected total of 15 patients based on the location of tumor, as following subsite: subareolar, upper outer, upper inner, lower lateral, and lower medial quadrants. The clinical target volume (CTV) was defined as the area of architectural distortion surrounded by surgical clip plus 1 cm margin. The conformity index (CI), homogeneity index (HI), quality of coverage (QC) and dose-volume parameters for the CTV, and organ at risk (OAR) were calculated. The following treatment techniques were assessed: single conformal EB plans; 3DHT plans with directional block of left anterior descending artery (LAD); and 3DHT plans with complete block of LAD. Results: 3DHT plans, regardless of type of LAD block, showed significantly better CI, HI, and QC for the CTVs, compared with the EB plans. However, 3DHT plans showed increase in the $V_{1Gy}$ at skin, left lung, and left breast. In terms of LAD, 3DHT plans with complete block of LAD showed extremely low dose, while dose increase in other OARs were observed, when compared with other plans. EB plans showed the worst conformity at upper outer quadrants of tumor bed site. Conclusion: 3DHT plans offer more favorable dose distributions to LAD, as well as improved target coverage in comparison with EB plans.

Acceptance Test and Clinical Commissioning of CT Simulator

  • An, Hyun Joon;Son, Jaeman;Jin, Hyeongmin;Sung, Jiwon;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.160-166
    • /
    • 2019
  • This study examined the clinical use of two newly installed computed tomography (CT) simulators in the Department of Radiation Oncology. The accreditation procedure was performed by the Korean Institute for Accreditation of Medical Imaging. An Xi R/F dosimeter was used to measure the CT dose index for each plug of the CT dose index phantom. Image qualities such as the Hounsfield unit (HU) value of water, noise level, homogeneity, existence of artifacts, spatial resolution, contrast, and slice thickness were evaluated by scanning a CT performance phantom. All test items were evaluated as to whether they were within the required tolerance level. CT calibration curves-the relationship between CT number and relative electron density-were obtained for dose calculations in the treatment planning system. The positional accuracy of the lasers was also evaluated. The volume CT dose indices for the head phantom were 22.26 mGy and 23.70 mGy, and those for body phantom were 12.30 mGy and 12.99 mGy for the first and second CT simulators, respectively. HU accuracy, noise, and homogeneity for the first CT simulator were -0.2 HU, 4.9 HU, and 0.69 HU, respectively, while those for second CT simulator were 1.9 HU, 4.9 HU, and 0.70 HU, respectively. Five air-filled holes with a diameter of 1.00 mm were used for assessment of spatial resolution and a low contrast object with a diameter of 6.4 mm was clearly discernible by both CT scanners. Both CT simulators exhibited comparable performance and are acceptable for clinical use.

Evaluation of Dosimetric Effect and Treatment Time by Plan Parameters for Endobronchial Brachytherapy

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Kang, SungHee;Cho, Jin Dong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.39-44
    • /
    • 2017
  • This study aims to analyze dose distribution and treatment time of endobronchial brachytherapy (EBBT) by changing the position step size of the dwell position. A solid water phantom and an intraluminal catheter were used in the treatment plan. The treatment plans were generated for 3, 5, 7, and 10 cm treatment lengths, respectively. For each treatment length, the source position step sizes were set as 2.5, 5, and 10 mm. Three reference points were set 1 cm away from the central axis of the catheter, along the axis, for uniform dose distribution. Volumetric dose distribution was calculated to evaluate the dosimetric effect. The total radiation delivery time and total dwell time were estimated for treatment efficiency, which were increased with position step sizes. At half-life time, the differences between the position step sizes in the total radiation delivery time were 18.1, 15.4, 18.0, and 24.0 s for 3, 5, 7, and 10 cm treatment lengths, respectively. The dose distributions were more homogenous by increasing the position step sizes. The dose difference of the reference point was less than 10%. In brachytherapy, this difference can be negligible. For EBBT, the treatment time is the key factor while considering the patient status. To reduce the total treatment time, EBBT can be performed with 2.5 mm position step size.