• Title/Summary/Keyword: Dose Calculation

Search Result 522, Processing Time 0.024 seconds

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

A Study on Dose Calculation in Intracavitary Radiotherapy of the Carcinoma of the Uterine Cervix with TAO Applicator (TAO Applicator를 이용한 자궁경암 강내조사시의 선양계산에 관한 고찰)

  • Kim, Chul-Soo;Kim, Jung-Jin
    • Radiation Oncology Journal
    • /
    • v.2 no.1
    • /
    • pp.101-106
    • /
    • 1984
  • Various methods are available for determination of exposure time in intracavitary radiotherapy of the carcinoma of the uterine cervix. To determine the accuracy of dose calculation with isodose curve for TAO applicator, comparison with results calculated by computer for radiotherapy treatment Planning was done in 24 procedures done in 12 consecutive patients with the carcinoma of the uterine cervix from May to December, 1983. The results are as follows: 1. The average dose rate Per hour of Point A was 87.70 rad, being 89.91 rad ana 85.49 rad in left and right, respectively. 2. The average percentage of dose rate of point A calculated by isodose curve method over that by computer was $101.28\%$ and the difference was less than $5\%$ in 17 Procedures and over $10\%$ in only 3 procedures. 3. The average percentage in case of point B was $108.67\%$. In conclusion, in most cases the difference was less than 200 rad for point A and less than 100 rad for point B during 2 courses of intracavitary radiotherapy. And so the dose rate calculation with isodose curve for TAO applicator is comparatively accurate.

  • PDF

Safety Assessment of Nuclear Waste Incineration Process by Estimating Radiation Dose of Workers and Residential Individuals (원자력폐기물 소각공정에서의 작업자 및 인근주민의 피폭선량에 따른 안전성 평가)

  • 서용칠
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.165-174
    • /
    • 1993
  • For the safety assessment of the demonstration-scale incineration plant for treating the combustible radioactive wastes, radiation doses of a worker and a residential individual were estimated. The demonstration plant showed a good performance of trial-burn tests using non-radioactive tracers with resulting In high mass reduction of around 40 times and very low emmission of dusts through a stack, which promised a high decontamination factor in an order of 10$^{7}$ . Based on the result s obtained from the trial-burns in the process, the estimation of radiation dose for workers and general publics near the plant was made using dose pathway calculation theories. The parametric values for calculation were selected from design and operational results of the process and from more conservative conditions In reference data. The estimated annual doses for workers and residential indivisuals were 3.07 $\times$ 10$^{-4}$ and 4.35 X 10$^{-8}$ $\mu$Sv/y, respectively, which were high enough to operate the process when comparing with the allowable dose limit in the regulation. The dose calculation models were quite applicable with showing an excellent safety for the process.

  • PDF

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF

Evaluation of electron dose distribution obtained from ADAC Pinnacle system against measurement and Monte Carlo method for breast patients

  • Lee, S.;Lee, R.;Park, D.;S. Suh
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.82-82
    • /
    • 2003
  • Introduction: With the development of dose calculation algorithms for electron beams, 3D RTP systerns are available for electron beam dose distribution commercially. However, no studies evaluated the accuracy of dose calculation with ADAC Pinnacle system for electron beams. So, the accuracy of the ADAC system is investigated by comparing electron dose distributions from ADAC system against the BEAMnrc/DOSXYZnrc. Methods: A total of 33 breast cancer patients treated with 6, 9, and 12MeV electrons in our institution was selected for this study. The first part of this study is to compare the dose distributions of measurement, TPS and the BEAMnrc/DOSXYZnrc code in flat water phantom at gantry zero position and for a 10 ${\times}$ 10 $\textrm{cm}^2$ field. The second part is to evaluate the monitor unit obtained from measurement and TPS. Adding actual breast patient's irregular blocks to the first part, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and 3D RTP system. In addition, the dose distributions using blocks were compared between TPS and the BEAMnrc/DOSXYZnrc code. Finally, the effects of tissue inhomogeneities were studied by comparing dose distributions from Pinnacle and Monte Carlo method on CT data sets. Results: The dose distributions calculated using water phantom by the TPS and the BEAMnrc/ DOSXYZnrc code agreed well with measured data within 2% of the maximum dose. The maximum differences of monitor unit between measured and Pinnacle TPS in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. In real-patient cases, comparison of depth doses and lateral dose profiles calculated by the Pinnacle TPS, with BEAMnrc/DOSXYZnrc code has generally shown good agreement with relative difference less than +/-3%. Discussion: For comparisons of real-patient cases, the maximum differences between the TPS and BEAMnrc/DOSXYZnrc on CT data were 10%. These discrepancies were due in part to the inaccurate dose calculation of the TPS, so that it needs to be improved properly. Conclusions: On the basis of the results presented in this study, we can conclude that the ADAC Pinnacle system for electron beams is capable of giving results absolutely comparable to those of a Monte Carlo calculation.

  • PDF

조영제 사용 전${\cdot}$후 불균질 조직 보정 알고리즘에 따른 선량변화에 대한 연구

  • Kim, Ju-Ho;Jo, Jeong-Hui;Lee, Seok;Jeon, Byeong-Cheol;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2001
  • Purpose : The aim of this study is to investigate the effect of tissue inhomogeneities when appling to contrast medium among Homogeneous, Batho and ETAR dose calculation method in RTP system. Method and Material : We made customized heterogeneous phantom it filled with water or contrast medium slab. Phantom scan data have taken PQ 5000 (CT scanner, Marconi, USA) and then dose was calculated in 3D RTP (AcQ-Plan, Marconi, USA) depends on dose calculation algorithm (Homogeneous, Batho, ETAR). The dose comparisons were described in terms of 2D isodose distribution, percent depth dose data, effective path length and monitor unit. Also dose distributions were calculated with homogeneous and inhomogeneous correction algorithm, Batho and ETAR, in each patients with different clinical sites. Results : Result indicated that Batho and ETAR method gave rise to percent depth dose deviation $1.5{\sim}2.7\%,\;2.3{\sim}3.5\%$ (6MV, field size $10{\times}10cm^2$) in each status with and without contrast medium. Also show that effective path lengths were more increase in contrast status (23.14 cm) than Non-contrast (22.07 cm) about $4.9\%$ or 10.7 mm (In case Hounsfield Unit 270) and these results were similary showned in each patient with different clinical site that was lung. prostate, liver and brain region. Concliusion : In conclusion we shown that the use of inhomogeneity correction algorithm for dose calculation in status of injected contrast medium can not represent exact dose at GTV region. These results mean that patients will be more irradiated photon beam during radiation therapy.

  • PDF

Implications of using a 50-μm-thick skin target layer in skin dose coefficient calculation for photons, protons, and helium ions

  • Yeom, Yeon Soo;Nguyen, Thang Tat;Choi, Chansoo;Han, Min Cheol;Lee, Hanjin;Han, Haegin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1495-1504
    • /
    • 2017
  • In a previous study, a set of polygon-mesh (PM)-based skin models including a $50-{\mu}m-thick$ radiosensitive target layer were constructed and used to calculate skin dose coefficients (DCs) for idealized external beams of electrons. The results showed that the calculated skin DCs were significantly different from the International Commission on Radiological Protection (ICRP) Publication 116 skin DCs calculated using voxel-type ICRP reference phantoms that do not include the thin target layer. The difference was as large as 7,700 times for electron energies less than 1 MeV, which raises a significant issue that should be addressed subsequently. In the present study, therefore, as an extension of the initial, previous study, skin DCs for three other particles (photons, protons, and helium ions) were calculated by using the PM-based skin models and the calculated values were compared with the ICRP-116 skin DCs. The analysis of our results showed that for the photon exposures, the calculated values were generally in good agreement with the ICRP-116 values. For the charged particles, by contrast, there was a significant difference between the PM-model-calculated skin DCs and the ICRP-116 values. Specifically, the ICRP-116 skin DCs were smaller than those calculated by the PM models-which is to say that they were under-estimated-by up to ~16 times for both protons and helium ions. These differences in skin dose also significantly affected the calculation of the effective dose (E) values, which is reasonable, considering that the skin dose is the major factor determining effective dose calculation for charged particles. The results of the current study generally show that the ICRP-116 DCs for skin dose and effective dose are not reliable for charged particles.

Dose Computational Time Reduction For Monte Carlo Treatment Planning

  • Park, Chang-Hyun;Park, Dahl;Park, Dong-Hyun;Park, Sung-Yong;Shin, Kyung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.116-118
    • /
    • 2002
  • It has been noted that Monte Carlo simulations are the most accurate method to calculate dose distributions in any material and geometry. Monte Carlo transport algorithms determine the absorbed dose by following the path of representative particles as they travel through the medium. Accurate Monte Carlo dose calculations rely on detailed modeling of the radiation source. We modeled the effects of beam modifiers such as collimators, blocks, wedges, etc. of our accelerator, Varian Clinac 600C/D to ensure accurate representation of the radiation source using the EGSnrc based BEAM code. These were used in the EGSnrc based DOSXYZ code for the simulation of particles transport through a voxel based Cartesian coordinate system. Because Monte Carlo methods use particle-by-particle methods to simulate a radiation transport, more particle histories yield the better representation of the actual dose. But the prohibitively long time required to get high resolution and accuracy calculations has prevented the use of Monte Carlo methods in the actual clinical spots. Our ultimate aim is to develop a Monte Carlo dose calculation system designed specifically for radiation therapy planning, which is distinguished from current dose calculation methods. The purpose of this study in the present phase was to get dose calculation results corresponding to measurements within practical time limit. We used parallel processing and some variance reduction techniques, therefore reduced the computational time, preserving a good agreement between calculations of depth dose distributions and measurements within 5% deviations.

  • PDF

Derivation of a Verification Formula for the Dose Rate Contributing to the Maze Door of the 6 MV Treatment Room (6 MV 치료실의 미로 도어에 기여하는 선량률의 검증식 유도)

  • Park, Cheol Seo;Kim, Jong Eon;Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • The purpose of this study is to derive an equation to verify the accuracy of the dose rate for each component calculated at the measurement point outside the maze door when designing the maze door of 6 MV X-ray beam. Based on the component-specific dose rate calculation formula for the measurement point outside the maze door described in NCRP Report 151 and IAEA Safety Report Series 47, the dose rate calculation formula for each component when applying the values of the drawing-based parameters and the dose rate calculation formula for each component when applying the values of conservative parameters are derived. From the two dose rate calculation formulas for each component, the dose rate verification formula for each component at the measurement point outside the maze door was derived. The resulting dose rate verification formula for each component at the measurement point outside the maze door can be compared and analyzed whether the dose rate for each component at the measurement point outside the maze door calculated by the designer falls within the range of the dose rate obtained from the derived dose rate verification formula for each component. This verification formula is considered to be practically useful in verifying the accuracy of the dose rate for each component calculated by the designer.

An Experimental Dosimetry of Irregularly-Shaped-Field Using Therapeutic Planning Computer (치료계획용 콤퓨터를 이용한 부정형 조사면의 선량분포에 관한 실험)

  • Park, Joo-Sun;Lee, Gui-Won;Han, Yong-Moon;Kwon, Hyoung-Cheol;Yoon, Sei-Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.2 no.1
    • /
    • pp.87-92
    • /
    • 1987
  • The authors have intended to measure intrinsic dose distribution by Farmer dosimeter in irregularly shaped fields such as L, M, T,-shape model in order to determine dose inhomogeneity in those models. We made 2 off-axis points in each model and measured the depth dose at 1.5,5, and 9cm below surface. The results showed $1-3\%$ dose discrepancy between 2 points. We also measured the depth dose by geometric approximation and computer calculation in those models, and came to the conclusion that computer calculation using Clarkson's principle is simpler and the measurements are to the ideal data obtained by the experiment in those three models of irregularly shaped fields than those of geometric approximation method.

  • PDF