• Title/Summary/Keyword: Dose Calculation

Search Result 525, Processing Time 0.024 seconds

Optimization Technique using Ideal Target Model and Database in SRS

  • Oh, Seung-Jong;Suh, Tae-Suk;Song, Ju-Young;Choe, Bo-Young;Lee, Hyoung-Koo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.146-149
    • /
    • 2002
  • The aim of stereotactic radiosurgery(SRS) is to deliver a high dose to a target region and a low dose to critical organ through only one or a few irradiation. To satisfy this aim, optimized irradiating conditions must be searched in the planning. Thus, many mathematical methods such as gradient method, simulated annealing and genetic algorithm had been proposed to find out the conditions automatically. There were some limitations using these methods: the long calculation time, and the difficulty of unique solution due to the different shape of tumor. In this study, optimization protocol using ideal models and data base was proposed. Proposed optimization protocol constitutes two steps. First step was a preliminary work. Some possible ideal geometry shapes, such as sphere, cylinder, cone shape or the combination, were assumed to approximate the real tumor shapes. Optimum variables such as isocenter position or collimator size, were determined so that the high dose region could be shaped to fit ideal models with the arrangement of multiple isocenter. Data base were formed with those results. Second, any shaped real targets were approximated to these models using geometry comparison. Then, optimum variables for ideal geometry were chosen from the data base predetermined, and final parameters were obtained by adjusting these data. Although the results of applying the data base to patients were not superior to the result of optimization in each case, it can be acceptable as a starting point of plan.

  • PDF

Shielding Capability Evaluation of Slit-shaped Structure for Scattered X-ray using Monte Carlo Method (몬테카를로 방법을 이용한 슬릿형태 구조물의 차폐능력 평가)

  • Kim, Sangrok;Heo, Jaeseung
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.733-740
    • /
    • 2020
  • As the use of radiation for medical purposes increases, the exposure dose of medical workers is also increasing. To reduce this dose, various studies on changing the shielding material have been conducted. Recently, a new method to reduce the dose at the entrance of the radiation treatment room was proposed by using the photoelectric effect that occurs when the radiation is scattered. Because this method is particularly effective for low-energy photons, in this study, a slit-type structure was proposed as a excellent shielding structure against scattered x-ray in a general photography room, and was evaluated the shielding effect by Monte Carlo simulation. As a result of the calculation, this study found that in the case of a structure in which steel plates with a thickness of 2 mm and a width of 5 cm are stacked at 2 mm intervals, a shielding effect was approximately 99.9% or more, excluding the heights of the floor and the patient where scattering occurs directly.

Development of volume reduction method of cesium contaminated soil with magnetic separation

  • Yukumatsu, Kazuki;Nomura, Naoki;Mishima, Fumihito;Akiyama, Yoko;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.10-13
    • /
    • 2016
  • In this study, we developed a new volume reduction technique for cesium contaminated soil by magnetic separation. Cs in soil is mainly adsorbed on clay which is the smallest particle constituent in the soil, especially on paramagnetic 2:1 type clay minerals which strongly adsorb and fix Cs. Thus selective separation of 2:1 type clay with a superconducting magnet could enable to reduce the volume of Cs contaminated soil. The 2:1 type clay particles exist in various particle sizes in the soil, which leads that magnetic force and Cs adsorption quantity depend on their particle size. Accordingly, we examined magnetic separation conditions for efficient separation of 2:1 type clay considering their particle size distribution. First, the separation rate of 2:1 type clay for each particle size was calculated by particle trajectory simulation, because magnetic separation rate largely depends on the objective size. According to the calculation, 73 and 89 % of 2:1 type clay could be separated at 2 and 7 T, respectively. Moreover we calculated dose reduction rate on the basis of the result of particle trajectory simulation. It was indicated that 17 and 51 % of dose reduction would be possible at 2 and 7 T, respectively. The difference of dose reduction rate at 2 T and 7 T was found to be separated a fine particle. It was shown that magnetic separation considering particle size distribution would contribute to the volume reduction of contaminated soil.

Study on EGS5 Based Test Code and Preliminary Results (EGS5 기반 사용자코드의 작성과 초기 계산결과)

  • Jeong Dong-Hyeok;Kim Jhin-Kee;Shin Kyo-Chul;Kim Ki-Hwan;Kim Jeung-Kee;Oh Young-Kee;Ji Young-Hun
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • A test code was written to apply the EGS5 Monte Carlo code recently published to radiotherapy. This test code was designed to calculate the depth dose in cylindrical phantom for point source model. The evaluation of the test code was peformed by calculating the depth dose curves for high energy electrons of 5, 9, 12, and 15 MeV photons of Co-60 and 10 MV in water and comparing the results with DOSRZ/EGS4 results. In depth dose results, the differences between test code and DOSRZ/EGS4 were estimated to be less then ${\pm}1.5%\;and\;{\pm}3.0%$ approximately for electron and photon beams respectively.

  • PDF

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

RADIOLOGICAL DOSE ASSESSMENT ACCORDING TO METHODOLOGIES FOR THE EVALUATION OF ACCIDENTAL SOURCE TERMS

  • Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.176-181
    • /
    • 2014
  • The object of this paper is to evaluate the fission product inventories and radiological doses in a non-LOCA event, based on the U.S. NRC's regulatory methodologies recommended by the TID-14844 and the RG 1.195. For choosing a non-LOCA event, one fuel assembly was assumed to be melted by a channel blockage accident. The Hanul nuclear power reactor unit 6 and the CE $16{\times}16$ fuel assembly were selected as the computational models. The burnup cross section library for depletion calculations was produced using the TRITON module in the SCALE6.1 computer code system. Based on the recently licensed values for fuel enrichment and burnup, the source term calculation was performed using the ORIGEN-ARP module. The fission product inventories released into the environment were obtained with the assumptions of the TID-14844 and the RG 1.195. With two kinds of source terms, the radiological doses of public in normal environment reflecting realistic circumstances were evaluated by applying the average condition of meteorology, inhalation rate, and shielding factor. The statistical analysis was first carried out using consecutive three year-meteorological data measured at the Hanul site. The annual-averaged atmospheric dispersion factors were evaluated at the shortest representative distance of 1,000 m, where the residents are actually able to live from the reactor core, according to the methodology recommended by the RG 1.111. The Korean characteristic-inhalation rate and shielding factor of a building were considered for a series of dose calculations.

The Study on Dose Calculations for Blocked Fields (차폐 조사면에서 선량계산에 관한 연구)

  • 정동혁;김진기;오영기;신교철;김기환;김정기;문성록;김정수;박인규
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.133-140
    • /
    • 2001
  • The dose calculations for blocked fields were studied. The shielding block correction factors(K$_{b}$) as a function of collimator and blocked field size(r$_{c}$ and r$_{b}$) were measured. A simplified $K_{b}$ as a function of $A_{r}$ (the A/P ratio of r$_{b}$ to r$_{c}$) was determined by measured data and a fitting function for $K_{b}$ was obtained. We found that the corrections of $K_{b}$ for blocked fields in MU(monitor units) calculations need not take into account in common case of $A_{r}$ \ulcorner1 but the errors will be 3.5% in particular case such as $A_{r}$ = 0.5. These results imply that the shielding block correction for blocked fields in clinical dose calculations must be considered.

  • PDF

Monte Carlo Calculation of Thermal Neutron Flux Distribution for (n, v) Reaction in Calandria (몬테칼로 코드를 이용한 중수로 Calandria에서의 $(n,\;{\gamma})$ 반응유발 열중성자속분포 계산)

  • Kim, Soon-Young;Kim, Jong-Kyung;Kim, Kyo-Youn
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 1994
  • The MCNP 4.2 code was used to calculate the thermal neutron flux distributions for $(n,\;{\gamma})$reaction in mainshell, annular plate, and subshell of the calandria of a CANDU 6 plant during operation. The thermal neutron flux distributions in calandria mainshell, annular plate, and subshell were in the range of $10^{11}{\sim}10^{13}\;neutrons/cm^2-sec$ which is somewhat higher than the previous estimates calculated by DOT 4.2 code. As an application to shielding analysis, photon dose rates outside the side and bottom shields were calculated. The resulting dose rates at the reactor accessible areas were below design target, $6 {\mu}Sv/h$. The methodology used in this study to evaluate the thermal neutron flux distribution for $(n,\;{\gamma})reaction$ can be applied to radiation shielding analysis of CANDU 6 type plants.

  • PDF

Development of a Monte Carlo Simulation Code (CALEFF) for Calibrating Thyroid Internal Dose Measurement and Detection Efficiency Calculation (갑상선 내부피폭선량 측정치 보정을 위한 몬테카를로 모의실험 코드 (CALEFF) 개발 및 검출효율 계산)

  • Ahn, Ki-Soo;Cho1, Hyo-Sung
    • Journal of radiological science and technology
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • According to the Para. 5 of Art 2 of the Korean Nuclear Safety Regulations, which was revised in 1999, internal dose assessment as well as external one should be performed by law for employees at a nuclear power plant from 2003, and their estimate errors should also be within 50%. Thus, more accurate internal dosimetry becomes important. Corresponding to such regulation revision, we are developing a more accurate thyroid-uptake internal dosimetric system and have developed a Monte Carlo simulation code, the so-called CALEFF, to calculate the detection efficiency of the dosimetric system. In this paper, we calculated detection efficiencies with various test conditions by using the CALEFF code and discussed their characteristics. We may use the detection efficiency calculated by the code in calibrating the thyroid internal dose from measured data.

  • PDF

Calculation of Internal Exposure Dose in Korean Man Resulting from Single and Chronic Intake of Tritium (트리튬($^{3}H$)의 단일(單一) 및 만성섭취(晩性攝取)에 대한 한국인(韓國人)의 내부피복(內部被曝) 선량(線量) 계산(計算))

  • Kim, Jang-Lyul;Yook, Chong-Chul;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.8 no.2
    • /
    • pp.8-14
    • /
    • 1983
  • The doses to Korean adult by a single and chronic intake of tritiated water are determined using a three compartment model, which describes the retention of tritium radionuclide in body water and in bound organic form in the body. The results show that the total dose of a single intake, using retention half-time for the three-compartment of 9, 30, and 450 days, is 17.64 mrads ($176.4{\mu}Gy$) per 1mCi/kg ($3.7{\times}10^7Bq/kg$) intake, 97% of which is due to tritium in body water and 3% to bound tritium in tissue. In the chronic intake of 1mCi/day($3.7{\times}10^7Bq/day$) tritiated water, the total dose is 85.5 mrad/day(0.855mGy/day). Furthermore, in this study (MPC) a and (MPC)w values of tritium for Korean man are calculated by using the modified formula originated from ICRP Publication-2. From the results, we found that the (MPC) a, w values of ICRP underestimated approximately 50%, the (MPC)a, w values of Korean man must be elevated as high as approximately 50% than that of ICRP.

  • PDF