• 제목/요약/키워드: Doping with $La_2O_3$

검색결과 46건 처리시간 0.029초

The Magnetic and Magnetocaloric Properties of the Perovskite La0.7Ca0.3Mn1-xNixO3

  • Hua, Sihao;Zhang, Pengyue;Yang, Hangfu;Zhang, Suyin;Ge, Hongliang
    • Journal of Magnetics
    • /
    • 제18권1호
    • /
    • pp.34-38
    • /
    • 2013
  • This paper studies the effects of the Mn-site substitution by nickel on the magnetic properties and the magnetocaloric properties of $La_{0.7}Ca_{0.3}Mn_{1-x}Ni_xO_3$ (x = 0, 0.05 and 0.1). The orthorhombic crystal structures of the samples are confirmed by the room temperature X-ray diffraction. The dependence of the Curie temperature ($T_C$) and the magnetic entropy change (${\Delta}S_M$) on the Ni doping content was investigated. The samples with x = 0 had the first order phase transition, while the samples with x = 0.05 and 0.1 had the second order phase transition. As the concentration of Ni increased, the maximum entropy change (${\mid}{\Delta}S_M{\mid}_{max}$) decreased gradually, from 2.78 $J{\cdot}kg^{-1}{\cdot}K^{-1}$ (x = 0) to 1.02 $J{\cdot}kg^{-1}{\cdot}K^{-1}$ (x = 0.1), in a magnetic field change of 15 kOe. The measured value of $T_C$ was 185 K, 150 K and 145 K for x = 0, 0.05 and 0.1, respectively. The phase transition temperatures became wider as x increased. It indicates that the Mn-site substitution by Ni may be used to tailor the Curie temperature in $La_{0.7}Ca_{0.3}Mn_{1-x}Ni_xO_3$.

Active Reaction Sites and Oxygen Reduction Kinetics on $La_1_{-x}Sr_xMnO_{3+\delta}$(x=0.1-0.4)/YSZ (Yttria-Stabilized Zirconia) Electrodes for Solid Oxide Fuel Cells

  • Lee, Hee Y.;Cho, Woo S.;오승모
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권6호
    • /
    • pp.661-666
    • /
    • 1998
  • Active reaction sites and electrochemical O2 reduction kinetics on La_{1-x}Sr_xMnO_{3+{\delta}} (x=0.1-0.4)/YSZ (yttria-stabilized zirconia) electrodes are investigated in the temperature range of 700-900 ℃ at $Po_2=10^{-3}$-0.21 atm. Results of the steady-state polarization measurements, which are formulated into the Butler-Volmer formalism to extract transfer coefficient values, lead us to conclude that the two-electron charge transfer step to atomically adsorbed oxygen is rate-limiting. The same conclusion is drawn from the $Po_2$-dependent ac impedance measurements, where the exponent m in the relationship of $I_o$ (exchange current density) ∝ $P_{o_{2}}^m$ is analyzed. Chemical analysis is performed on the quenched Mn perovskites to estimate their oxygen stoichiometry factors (δ) at the operating temperature (700-900 ℃). Here, the observed δ turns out to become smaller as both the Sr-doping contents (x) and the measured temperature increase. A comparison between the 8 values and cathodic activity of Mn perovskites reveals that the cathodic transfer coefficients $({\alpha}_c)$ for oxygen reduction reaction are inversely proportional to δ whereas the anodic ones $({\alpha}_a)$ show the opposite trend, reflecting that the surface oxygen vacancies on Mn perovskites actively participate in the $O_2$ reduction reaction. Among the samples of x= 0.1-0.4, the manganite with x=0.4 exhibits the smallest 8 value (even negative), and consistently this electrode shows the highest ${\alpha}_c$ and the best cathodic activity for the oxygen reduction reaction.

Cu가 도핑된 LSM의 구조분석과 열팽창특성 연구 (Structural analysis and thermal expansion property of Cu doped LSM for SOFCs)

  • 노태민;류지승;김진성;정철원;이희수
    • 한국결정성장학회지
    • /
    • 제21권4호
    • /
    • pp.175-180
    • /
    • 2011
  • 이종 원자가를 가시는 Cu의 도핑이 LSM에 미치는 영향을 구조적인 분석과 열팽창계수를 통해서 고찰하였다. 고상반응을 이용하여 $La_{0.8}Sr_{0.2}Mn_{1-x}Cu_xO_3$($0{\leq}x{\leq}0.3$)음 제조하였으며, Cu의 도핑 함량에 따른 결정구조 및 열팽창계수를 확인하였다. Cu 함량이 증가함에 따라서 격자상수외 열팽창계수가 감소하는 경향을 나타냈지만, x = 0.3인 경우에는 증가 하였다. 이러한 격자상수와 열팽창계수의 변화는 Cu 이온의 B-site에서의 Mn 자리에 치환될 때 $0{\leq}x{\leq}0.2$의 범위에서는 $Cu^{3+}$의 존재로 인한 이온 반성의 감소에 의한 것으로 판단되었고, x=0.3인 경우에는 $Cu^{2+}$$Mn^{4+}$의 존재로 인한 산소 공공의 증가에 기인한 것이었다.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질 (PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries)

  • 신소현;김성훈;조용현;안욱
    • 전기화학회지
    • /
    • 제25권3호
    • /
    • pp.105-112
    • /
    • 2022
  • 전고체전지의 상용화를 위해서는 상온에서 작동이 가능한 고체전해질 개발이 필수적이며 이온전도도가 높은 물질을 채택하여 전고체전지를 제조해야 한다. 따라서, 기존의 옥사이드 계열의 고체의 이온전도도를 높이기 위하여 이종원소가 도핑된 Li7La3Zr2O12 (LLZO)를 필러소재(Al, Nb-LLZO)로 사용하였으며, 상온에서 작동이 가능하도록 Poly(ethylene oxide)/Poly(propylene carbonate) (PEO/PPC) 기반의 가넷형 무기계 고체고분자 전해질을 제조하였다. 이원금속 원소를 도핑한 가넷형 무기계 필러와 PEO/PPC (1:1 비율로 섞인) 고분자를 1:2.4의 비율로 균일하게 교반하여 전해질을 합성해 상온과 60 ℃에서 전고체 전지의 전기학적 성능을 분석하였다. 제조한 복합 전해질은 이원금속의 도핑으로 인하여 이온전도도가 향상되었으며, PEO 단독으로 사용하는 전해질보다 PPC를 1:1로 첨가하였을 때 이온전도도 향상을 도와 60 ℃ 뿐만 아니라 상온에서 전고체 전지의 용량과 용량 유지율이 개선되었음을 확인하였다.

Crystal Structure and Physical Property of Tetragonal-like Epitaxial Bismuth Ferrites Film

  • Nam, Joong-Hee;Biegalski, Michael;Christen, Hans M.;Kim, Byung-Ik
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 임시총회 및 하계학술연구발표회
    • /
    • pp.7-8
    • /
    • 2011
  • Basically, the lattice mismatch between film and substrate can make those BiFeO3(BFO) films distorted with strain structure. BFO phase can be stabilized on LaAlO3(LAO) represents the example of a multiferroic with giant axial ratio. Its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion and related to the rotation of the oxygen octahedra. In this study, we show that phases with a tetragonal-like epitaxial BFO films can indeed be ferroelectric and also can be stabilized via epitaxial growth onto LAO. Recent reports on epitaxial BFO films show that the crystal structure changes from nearly rhombohedral ("R-like") to nearly tetragonal("T-like") at strains exceeding approximately -4.5%, with the "T-like" structure being characterized by a highly enhanced c/a ratio. While both the "R-like" and the "T-like" phases are monoclinic, our detailed x-ray diffraction results reveal asymmetry change from MA and MC type, respectively. By applying additional strain or by modifying the unit cell volume of the film by substituting Ba for Bi, the monoclinic distortion in the "T-like" MC phase is reduced, i.e. the system approaches a true tetragonal symmetry. There are two different M-H loops for $Bi_{1-x}Ba_xFeO_{3-{\delta}}$(BBFO) and BFO films on SrTiO3(STO) & LAO substrates. Along with the ferroelectric characterization, these magnetic data indicate that the BFO phase stabilized on LAO represents the first example of a multiferroic with giant axial ratio. However, there is a significant difference between this phase and other predicted ferroelectrics with a giant axial ratio: its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion. Therefore, in going from bulk to highly-strained films, a phase sequence of rhombohedral(R)-to-monoclinic ["R-like" MA-to-monoclinic, "T-like" MC-to-tetragonal (T)] is observed. This sequence is otherwise seen only near morphotropic phase boundaries in lead-based solid-solution perovskites (i.e. near a compositionally induced phase instability), where it can be controlled by electric field, temperature, or composition. Our results show that this evolution can occur in a lead-free, stoichiometric material and can be induced by stress alone. Those major results are summarized as follows ; 1) Ba-doping increases the unit cell volume, 2) BBFO on LAO can be fully strained up to x=0.08 as a strain limit (Fig. 1), 3) P(E) & M(H) properties can be tuned by the variation of composition, strain, and film thickness.

  • PDF