DOI QR코드

DOI QR Code

Structural analysis and thermal expansion property of Cu doped LSM for SOFCs

Cu가 도핑된 LSM의 구조분석과 열팽창특성 연구

  • Noh, Tai-Min (School of Materials Science and Engineering, Pusan National University) ;
  • Ryu, Ji-Seung (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Kim, Jin-Seong (School of Materials Science and Engineering, Pusan National University) ;
  • Jeong, Cheol-Weon (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Lee, Hee-Soo (School of Materials Science and Engineering, Pusan National University)
  • 노태민 (부산대학교 재료공학부) ;
  • 류지승 (부산대학교 하이브리드소재 솔루션 국가핵심연구센터) ;
  • 김진성 (부산대학교 재료공학부) ;
  • 정철원 (부산대학교 하이브리드소재 솔루션 국가핵심연구센터) ;
  • 이희수 (부산대학교 재료공학부)
  • Received : 2011.07.06
  • Accepted : 2011.07.22
  • Published : 2011.08.31

Abstract

The doping effect of Cu in the Sr-doped lanthan manganites (LSM) has been investigated in terms of structural analysis and thermal expansion coefficient (TEC). The $La_{0.8}Sr_{0.2}Mn_{1-x}Cu_xO_3$ ($0{\leq}x{\leq}0.3$) were prepared by solid state reaction method and their crystal structure and TEC were measured. A decrease in the lattice parameters and the TEC were observed with increase eu content, whereas they were decreased for x = 0.3. For $0{\leq}x{\leq}0.2$, the decrease of the lattice parameter and the TEC with increase Cu content were attributed to the reduction of ionic radius of Cu ions due to the presence of $Cu^{3+}$ ions. For x = 0.3, however, the increase was originated from the formation of oxygen vacancies due 10 the presence of $Cu^{2+}$ and $Mn^{4+}$.

이종 원자가를 가시는 Cu의 도핑이 LSM에 미치는 영향을 구조적인 분석과 열팽창계수를 통해서 고찰하였다. 고상반응을 이용하여 $La_{0.8}Sr_{0.2}Mn_{1-x}Cu_xO_3$($0{\leq}x{\leq}0.3$)음 제조하였으며, Cu의 도핑 함량에 따른 결정구조 및 열팽창계수를 확인하였다. Cu 함량이 증가함에 따라서 격자상수외 열팽창계수가 감소하는 경향을 나타냈지만, x = 0.3인 경우에는 증가 하였다. 이러한 격자상수와 열팽창계수의 변화는 Cu 이온의 B-site에서의 Mn 자리에 치환될 때 $0{\leq}x{\leq}0.2$의 범위에서는 $Cu^{3+}$의 존재로 인한 이온 반성의 감소에 의한 것으로 판단되었고, x=0.3인 경우에는 $Cu^{2+}$$Mn^{4+}$의 존재로 인한 산소 공공의 증가에 기인한 것이었다.

Keywords

References

  1. S.J. Skinner, "Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes", Int. J. Inorg. Mater. 3 (2001) 113. https://doi.org/10.1016/S1466-6049(01)00004-6
  2. C. Sun, R. Hui and J. Roller, "Cathode materials for solid oxide fuel cells: a review", J. Solid State Electr. 14 (2010) 1125. https://doi.org/10.1007/s10008-009-0932-0
  3. EV. Tsipis and VV. Kharton, "Electrode materials and reaction mechanisms in soild oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects", J. Solid State Electr. 15 (2011) 1007. https://doi.org/10.1007/s10008-011-1341-8
  4. J.W. Kim, A.V. Virkar, K.Z. Fung, K. Mehta and S.C. Singhal, "Polarization Effect in intermediate temperature, anode-supported solid oxide fuel cells", J. Electrochem. Soc. 146 (1999) 69. https://doi.org/10.1149/1.1391566
  5. T. Tsai and S.A. Barnett, "Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance", Solid State Ionics 93 (1997) 207. https://doi.org/10.1016/S0167-2738(96)00524-3
  6. M.E. Perry and S.A. Barnett, "$(La,Sr)MnO_{3}-(Ce, GD)O_{2-x}$ composite cathodes for solid oxide fuel cells", Solid state Ionics 143 (2001) 265. https://doi.org/10.1016/S0167-2738(01)00871-2
  7. W.X. Chen, H.W. Nie, W.H. Huang, R. Zheng, H.Y. Tu, Z.Y. Lu and T.L. Wen, "$La_{0.6}Sr_{0.4}Co_{0.8}Mn_{0.2}O_{3-d}$ cathode for an intermediate temperature SOFC", J. Mater. Sci. Lett. 22 (2003) 651. https://doi.org/10.1023/A:1023650524287
  8. H.C. Yu and K.Z. Fung, "$La_{1-x}Sr_{x}CuO_{2.5-d}$ as new cathode materials for intermediate temperature solid oxide fuel cells", Mater. Res. Bull. 38 (2003) 231. https://doi.org/10.1016/S0025-5408(02)01034-6
  9. H.C. Yu and K.Z. Fung, "Electrode properties of $La_{1-x}Sr_{x}CuO_{2.5-d}$ as new cathode materials for intermediate- temperature SOFCs", J. Power Sources 133 (2004) 162. https://doi.org/10.1016/j.jpowsour.2004.02.002
  10. A. Berenov, H. Wood and A. Atkinson, "Evaluation of $La_{0.8}Sr_{0.2}Cu_{1-x}Mn_{x}O_{y}$ double perovskite for use in SOFCs", J. Electrochem. Soc. 154 (2007) 1362. https://doi.org/10.1149/1.2792193
  11. S.H. Yang, K.H. Kim, H.H. Yoon, W.J. Kim and H.W. Choi, "Comparison of combustion and solid-state reaction methods for the fabrication of SOFC LSM cathodes", Mol. Cryst. Liq. Cryst. 539 (2011) 50.
  12. M. El-Hagary, Y.A. Shoker, S. Mohammad, A.M. Moustafa, A. Abd El-Aal, H. Michor, M. Reissner, G. Hilscher and A.A. Ramadan, "Structural and magnetic properties of polycrystalline $La_{0.77}Sr_{0.23}Mn_{1-x}Cu_{x}O_{3}$ ($0 {\leq} x {\leq} 0.5$) manganites", J. Alloy Compd. 468 (2009) 47. https://doi.org/10.1016/j.jallcom.2008.01.048
  13. M. El-Hagary, Y.A. Shoker, M. Emam-Ismail, A.M. Moustafa, A. Abd El-Aal and A.A. Ramadan, "Magnetocaloric effect in manganite perovskites $La_{0.77}Sr_{0.23}Mn_{1-x}Cu_{x}O_{3}$ ($0.1 {\leq} x {\leq} 0.3$)", Solid State Commun. 149 (2009) 184. https://doi.org/10.1016/j.ssc.2008.11.023
  14. X. Shen, G. Xu and C. Shao, "The effect of B site doping on infrared emissivity of lanthanum manganites $La_{0.8}Sr_{0.2}Mn_{1-x}B_{x}O_{3}$ (B=Ti or Cu)", J. Alloy Compd. 499 (2010) 212. https://doi.org/10.1016/j.jallcom.2010.03.169
  15. M.S. Kim, J.B. Yang, P.E. Parris, Q. Cai, X.D. Zhou, W.J. James, W.B. Yelon, D. Buddhikot and S.K. Malik, "The effect of Cu-doping on the magnetic and transport properties of $La_{0.7}Sr_{0.3}MnO_{3}$", J. Appl. Phys. 97 (2005) 10H714. https://doi.org/10.1063/1.1860992
  16. R.W. Wandekar, B.N. Wani and S.R. Bharadwaj, "Effect of Ni substitution on the crystal structure and thermal expansion behaviour of $(La_{0.8}Sr_{0.2})_{0.95}MnO_{3}$", Mater. Lett. 59 (2005) 2799. https://doi.org/10.1016/j.matlet.2005.03.062
  17. F. Tietz, "Thermal Expansion of SOFC Materials", Ionics 5 (1999) 129. https://doi.org/10.1007/BF02375916

Cited by

  1. type layered perovskite as cathode for SOFCs vol.25, pp.3, 2015, https://doi.org/10.6111/JKCGCT.2015.25.3.116