• Title/Summary/Keyword: Doping Rate

Search Result 210, Processing Time 0.038 seconds

A Self-Aligned Metal Gate MOSFET Structure Utilizing The Oxidation Rate Variation on The Impurity Concentration (불순물 농도에 따른 산화막 성장률의 차이를 이용한 자기 정렬된 금속게이트 MOSFET 구조)

  • 고요환;최진호;김충기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.462-469
    • /
    • 1987
  • A metal gate MOSFET with source/drain regions self-aligned to gate region is proposed. The proposed MOS transistor is fabricated by utilizing the higher oxidation rate of source/drain regions with high doping concentration when compared with channel region with moderate doping. The thick oxide on the source/drain regions reduces the gate and drain(source) overlap capacitance down to that of a self-aligned polysilicon gate device while allowing the use of a metal gate with much lower resistivity than the more commonly used polycrystalline silicon. A ring oscillator composed of 15 inverter stages has been computer simulated using SPICE. The results of the simulation show good agreement with experimental measurement confirming the fast switching speed of propesed MOSFET.

  • PDF

Fabrication Processes of Interconnection Systems for Bare Chip Burn-In Tests Using Epitaxial Layer Growth and Etching Techniques of Silicon (실리콘 에피층 성장과 실리콘 에칭기술을 이용한 Bare Chip Burn-In 테스트용 인터컨넥션 시스템의 제조공정)

  • 권오경;김준배
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.174-181
    • /
    • 1995
  • Multilayered silicon cantilever beams as interconnection systems for bare chip burn-in socket applications have been designed, fabricated and characterized. Fabrication processes of the beam are employing standard semiconductor processes such as thin film processes and epitaxial layer growth and silicon wet etching techniques. We investigated silicon etch rate in 1-3-10 etchant as functions of doping concentration, surface mechanical stress and crystal defects. The experimental results indicate that silicon etch rate in 1-3-10 etchant is strong functions of doping concentration and crystal defect density rather than surface mechanical stress. We suggested the new fabrication processes of multilayered silicon cantilever beams.

  • PDF

Recent Development in the Rate Performance of Li4Ti5O12

  • Lin, Chunfu;Xin, Yuelong;Cheng, Fuquan;Lai, Man On;Zhou, Henghui;Lu, Li
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.72-82
    • /
    • 2014
  • Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, $Li_4Ti_5O_{12}$ (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor $Li^+$ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

In-situ phosphorus doping effect on epitaxial growth of $Si_{1-x}Ge_{x}$ film with high ge fraction (고농도 ge fraction을 갖는 $Si_{1-x}Ge_{x}$ 막의 epitaxial growth에 대한 in-situ phosphorus doping 효과)

  • 이철진;박정훈;김성진
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.437-440
    • /
    • 1998
  • We studied phosphorus doping effect on the epitaxial growth of $Si_{1-x}Ge_{x}$ film with high Ge fraction on Si substates at 550.deg. C by LPCVD. In a low $Ph_{3}$ partial pressure region such as below 1.25 mPa, the phosphorus dopant concentration increased linearly with increasing $PH_{3}$ partial pressure while the deposition rate and the Ge fraction were constant. In a higher $PH_{3}$ partial pressure region, the phosphorus dopant concentration and the deposition rate decreased, while the Ge fraction slightly increased. The deposition arate and the Ge fraction increased with increasing $GeH_{4}$ partial pressure while the phophours dopant concentration decreased. But the increasing rate of Ge fraction with incrasing $PH_{3}$ partial pressure was reduced at a high $GeH_{4}$ partial pressure. According to test results, it suggests that high surface coverage of phosphorus atoms suppress both the $SiH_{4}$ adsorption/reasction and the $GeH_{4}$ adsorption/reaction on the surfaces, and the effect is more stronger on $SiH_{4}$ than on $GeH_{4}$. In a higher $PH_{3}$ partial pressure region, the epitaxial growth is largely controlled by surface coverage effect of phosphorus atoms. The phosphorus surface coverage was slimited at a high $GeH_{4}$ partial pressure because adsorbed Ge atoms effectively suppresses the adsorption of phosphorus atoms.

  • PDF

The Root Cause of the Rate Performance Improvement After Metal Doping: A Case Study of LiFePO4

  • Park, Chang-Kyoo;Park, Sung-Bin;Park, Ji-Hun;Shin, Ho-Chul;Cho, Won-Il;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.921-926
    • /
    • 2011
  • This study investigates a root cause of the improved rate performance of $LiFePO_4$ after metal doping to Fesites. This is because the metal doped $LiFePO_4$/C maintains its initial capacity at higher C-rates than undoped one. Using $LiFePO_4$/C and doped $LiFe_{0.97}M_{0.03}PO_4$/C (M=$Al^{3+}$, $Cr^{3+}$, $Zr^{4+}$), which are synthesized by a mechanochemical process followed by one-step heat treatment, the Li content before and after chemical delithiation in the $LiFePO_4$/C and the binding energy are compared using atomic absorption spectroscopy (AAS) and X-ray photoelectron spectroscopy (XPS). The results from AAS and XPS indicate that the low Li content of the metal doped $LiFePO_4$/C after chemical delithiation is attributed to the low binding energy induced by weak Li-O interactions. The improved capacity retention of the doped $LiFePO_4$/C at high discharge rates is, therefore, achieved by relatively low binding energy between Li and O ions, which leads to fast Li diffusivity.

Effect of Dopping Conditions on a-Se Thin-Films : Microstructural and I-V Study (비정질 박막에 대한 도핑 조건의 영향 및 미세구조와 I-V 연구)

  • Park, S.K.;Park, J.K.;Kang, S.S.;Kong, H.K.;Kim, J.S.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.492-496
    • /
    • 2001
  • Due to their better photosensitivity in X-ray, the amorphous selenium based photoreceptor is widely used on the X-ray conversion materials. It was possible to control the charge carrier transport of amorphous selenium by suitably alloying a-Se with other elements(e,g. As, Cl). In this paper, We investigated dopants(As, Cl) composition rate to improve dark resistivity and transport properties of charge carrier in amorphous selenium using by direct X-ray conversion material. Alloying a-Se with As inhibits the recrystallization of a-Se but introduces undesirable deep hole traps. then doping with Cl(in the ppm range) compensates for the deep hole traps. We investigated their composition rate in various doping conditions and then obtained optimum dopant composition rate. The result was Se-As 0.3%-c] 30 ppm and X-ray Sensitivity was 0.57 pC/$pixel{\cdot}mR$ at $137{\mu}m{\times}137{\mu}m$ Pixel area.

  • PDF

Significant Improvements in White OLED Color Purity by Doping Ratio of $(POB)_{2}Ir(pic)$ ($(POB)_{2}Ir(pic)$의 doping 비율에 따른 White OLED의 색순도 향상에 관한 연구)

  • Kim, Dong-Eun;Kim, Byoung-Sang;Park, Jae-Chu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1373-1374
    • /
    • 2007
  • We has been synthesized $(POB)_{2}Ir(pic)$ as a red emitting materials and evaluated in the organic light emitting diodes (OLED). The layer of $Alq_3$ doped with $(POB)_{2}Ir(pic)$ as emitters has been demonstrated. The structure of the device is ITO/ NPB (40 nm) / $Zn(HPB)_2$ (40 nm)/ $Alq_3$ : $(POB)_{2}Ir(pic)$ (30 nm) / LiF / Al. We varied the doped rate of $(POB)_{2}Ir(pic)$. The doped rate is 0.4 %, 0.6%, 0.8 and 1.2%, respectively. When the doped rate of the $Alq_3$:$ Ir(POB)_{2}(pic)$ was 0.6%, white emission is achieved. The Commission Internationale de l'Eclairage (CIE) coordinates of the white emission are (0.316, 0.331) at an applied voltage of 10.75V.

  • PDF

Boron Doping Method Using Fiber Laser Annealing of Uniformly Deposited Amorphous Silicon Layer for IBC Solar Cells (IBC형 태양전지를 위한 균일하게 증착된 비정질 실리콘 층의 광섬유 레이저를 이용한 붕소 도핑 방법)

  • Kim, Sung-Chul;Yoon, Ki-Chan;Kyung, Do-Hyun;Lee, Young-Seok;Kwon, Tae-Young;Jung, Woo-Won;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.456-456
    • /
    • 2009
  • Boron doping on an n-type Si wafer is requisite process for IBC (Interdigitated Back Contact) solar cells. Fiber laser annealing is one of boron doping methods. For the boron doping, uniformly coated or deposited film is highly required. Plasma enhanced chemical vapor deposition (PECVD) method provides a uniform dopant film or layer which can facilitate doping. Because amorphous silicon layer absorption range for the wavelength of fiber laser does not match well for the direct annealing. In this study, to enhance thermal affection on the existing p-a-Si:H layer, a ${\mu}c$-Si:H intrinsic layer was deposited on the p-a-Si:H layer additionally by PECVD. To improve heat transfer rate to the amorphous silicon layer, and as heating both sides and protecting boron eliminating from the amorphous silicon layer. For p-a-Si:H layer with the ratio of $SiH_4$ : $B_2H_6$ : $H_2$ = 30 : 30 : 120, at $200^{\circ}C$, 50 W, 0.2 Torr for 30 minutes, and for ${\mu}c$-Si:H intrinsic layer, $SiH_4$ : $H_2$ = 10 : 300, at $200^{\circ}C$, 30 W, 0.5 Torr for 60 minutes, 2 cm $\times$ 2 cm size wafers were used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 20 ~ 27 % of power, 150 ~ 160 kHz, 20 ~ 50 mm/s of marking speed, and $10\;{\sim}\;50 {\mu}m$ spacing with continuous wave mode of scanner lens showed the correlation between lifetime and sheet resistance as $100\;{\Omega}/sq$ and $11.8\;{\mu}s$ vs. $17\;{\Omega}/sq$ and $8.2\;{\mu}s$. Comparing to the singly deposited p-a-Si:H layer case, the additional ${\mu}c$-Si:H layer for doping resulted in no trade-offs, but showed slight improvement of both lifetime and sheet resistance, however sheet resistance might be confined by the additional intrinsic layer. This might come from the ineffective crystallization of amorphous silicon layer. For the additional layer case, lifetime and sheet resistance were measured as $84.8\;{\Omega}/sq$ and $11.09\;{\mu}s$ vs. $79.8\;{\Omega}/sq$ and $11.93\;{\mu}s$. The co-existence of $n^+$layeronthesamesurfaceandeliminating the laser damage should be taken into account for an IBC solar cell structure. Heavily doped uniform boron layer by fiber laser brings not only basic and essential conditions for the beginning step of IBC solar cell fabrication processes, but also the controllable doping concentration and depth that can be established according to the deposition conditions of layers.

  • PDF

Effect of GaGe Sputtering Power on Ga Doping in Phase Change Memory Materials (상 변화 메모리 재료 내의 Ga 주입에 미치는 GaGe 스퍼터링 전력의 영향)

  • Jung, Soon-Won;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.285-290
    • /
    • 2015
  • The phase change memory material is an active element in phase change memory and exhibits reversible phase transition behavior by thermal energy input. The doping of the phase change memory material with Ga leads to the increase of its crystallization temperature and the improvement of its amorphous stability. In this study, we investigated the effect of GaGe sputtering power on the formation of the phase change memory material including Ga. The deposition rate linearly increased to a maximum of 127 nm and the surface roughness remained uniform as the GaGe sputtering power increased in the range from 0 to 75 W. The Ga concentration in the thin film material abruptly increased at the critical sputtering power of 60 W. This influence of GaGe sputtering power was confirmed to result from a combined sputtering-evaporation process of Ga occurring due to the low melting point of Ga ($29.77^{\circ}C$).

플라즈마 도핑 후 급속열처리법을 이용한 n+/p 얕은 접합 형성

  • Do, Seung-U;Seo, Yeong-Ho;Lee, Jae-Seong;Lee, Yong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.50-50
    • /
    • 2009
  • In this paper, the plasma doping is performed on p-type wafers using $PH_3$ gas(10 %) diluted with He gas(90 %). The wafer is placed in the plasma generated with 200 W and a negative DC bias (1 kV) is applied to the substrate for 60 sec under no substrate heating. the flow rate of the diluted $PH_3$ gas and the process pressure are 100 sccm and 10 mTorr, respectively. In order to diffuse and activate the dopant, annealing process such as rapid thermal annealing (RTA) is performed. RTA process is performed either in $N_2$, $O_2$ or $O_2+N_2$ ambient at $900{\sim}950^{\circ}C$ for 10 sec. The sheet resistance is measured using four point probe. The shallow n+/p doping profiles are investigated using secondary ion mass spectromtry (SIMS). The analysis of crystalline defect is also done using transmission electron microscopy (TEM) and double crystal X-ray diffraction (DXRD).

  • PDF