DOI QR코드

DOI QR Code

Recent Development in the Rate Performance of Li4Ti5O12

  • Lin, Chunfu (Department of Mechanical Engineering, National University of Singapore) ;
  • Xin, Yuelong (College of Chemistry and Molecular Engineering, Peking University) ;
  • Cheng, Fuquan (College of Chemistry and Molecular Engineering, Peking University) ;
  • Lai, Man On (Department of Mechanical Engineering, National University of Singapore) ;
  • Zhou, Henghui (College of Chemistry and Molecular Engineering, Peking University) ;
  • Lu, Li (Department of Mechanical Engineering, National University of Singapore)
  • Received : 2014.03.21
  • Accepted : 2014.03.31
  • Published : 2014.03.30

Abstract

Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, $Li_4Ti_5O_{12}$ (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor $Li^+$ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

Keywords

References

  1. M. Armand and J. M. Tarascon, Nature 451, 652 (2008). https://doi.org/10.1038/451652a
  2. M. Yoshio, H. Y. Wang, K. Fukuda, Y. Hara, and Y. Adachi, J. Electrochem. Soc. 147, 1245 (2000). https://doi.org/10.1149/1.1393344
  3. S. S. Zhang, K. Xu, and T. R. Jow, J. Power Sources 160, 1349 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.087
  4. S. S. Zheng, J. Power Sources 161, 1385 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.040
  5. A. D. Robertson, L. Trevino, H. Tukamoto, and J. T. S. Irvine, J. Power Sources 81, 352 (1999).
  6. K. M. Colbow, J. R. Dahn, and R. R. Haering, J. Power Sources 26, 397 (1989). https://doi.org/10.1016/0378-7753(89)80152-1
  7. J. B. Goodenough, and Y. Kim, Chem. Mater. 22, 587 (2010). https://doi.org/10.1021/cm901452z
  8. T. Ohzuku, A. Ueda, and N. Yamamoto, J. Electrochem. Soc. 142, 1431 (1995). https://doi.org/10.1149/1.2048592
  9. C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher, and M. M. Thackeray, J. Electrochem. Soc. 148, A102 (2001). https://doi.org/10.1149/1.1344523
  10. T. F. Yi, Y. Xie, Q. J. Wu, H. P. Liu, L. J. Jiang, M. F. Ye, and R. S. Zhu, J. Power Sources 214, 220 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.101
  11. Q. Y. Zhang, C. L. Zhang, B. Li, S. F. Kang, X. Li, and Y. G. Wang, Electrochim. Acta 98, 146 (2013) . https://doi.org/10.1016/j.electacta.2013.03.006
  12. C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher, and M. M. Thackeray, J. Electrochem. Soc. 148, A102 (2001). https://doi.org/10.1149/1.1344523
  13. H. L. Zhao, Y. Li, Z. M. Zhu, J. Lin, Z. H. Tian, and R. L. Wang, Electrochim. Acta 53, 7079 (2008). https://doi.org/10.1016/j.electacta.2008.05.038
  14. J. Y. Lin, C. C. Hsu, H. P. Ho, and S. H. Wu, Electrochim. Acta 87, 126 (2013). https://doi.org/10.1016/j.electacta.2012.08.128
  15. X. L. Zhang, G. R. Hu, Z. D. Peng, and J. Inorg. Mater. 26, 443 (2011). https://doi.org/10.3724/SP.J.1077.2011.10734
  16. B. B. Tian, H. F. Xiang, L. Zhang, H. H. Wang, J. Solid State Electrochem. 16, 205 (2012). https://doi.org/10.1007/s10008-011-1305-z
  17. B. B. Tian, H. F. Xiang, L. Zhang, Z. Li, H. H. Wang, Electrochim. Acta 55, 5453 (2010). https://doi.org/10.1016/j.electacta.2010.04.068
  18. T. F. Yi, H. P. Liu, Y. R. Zhu, L. J. Jiang, Y. Xie, and R. S. Zhu, J. Power Sources 215, 258 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.080
  19. W. Wang, H. L. Wang, S. B. Wang, Y. J. Hu, Q. X. Tian, and S. Q. Jiao, J. Power Sources 228, 244 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.092
  20. T. F. Yi, B. Chen, H. Y. Shen, R .S. Zhu, A. N. Zhou, and H. B. Qiao, J. Alloy Compd. 558, 11 (2013). https://doi.org/10.1016/j.jallcom.2013.01.018
  21. X. L. Zhang, G. R. Hu, and Z. D. Peng, J. Cent. South Univ. 20, 1151 (2013). https://doi.org/10.1007/s11771-013-1597-5
  22. T. F. Yi, Y. Xie, Q. J. Wu, H. P. Liu, L. J. Jiang, M. F. Ye, and R. S. Zhu, J. Power Sources 214, 220 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.101
  23. Z. J. Yu, X. F. Zhang, G. L. Yang, J. Liu, J. W. Wang, R. S. Wang, and J. P. Zhang, Electrochim. Acta 56, 8611 (2011). https://doi.org/10.1016/j.electacta.2011.07.051
  24. G. R. Hu, X. L. Zhang, and Z. D. Peng, Trans. Nonferrous Met. Soc. China 21, 2248 (2011). https://doi.org/10.1016/S1003-6326(11)61003-0
  25. Y. K. Sun, D. J. Jung, Y. S. Lee, and K. S. Nahm, J. Power Sources 125, 242 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.013
  26. C. F. Lin, M. O. Lai, L. Lu, H. H. Zhou, and Y. L. Xin, J. Power Sources 244, 272 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.056
  27. C. F. Lin, B. Ding, Y. L. Xin, F. Q. Cheng, M. O. Lai, L. Lu, and H. H. Zhou, J. Power Sources 248, 1034 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.120
  28. Y. D. Huang, Y. L. Qi, D. Z. Jia, X. C. Wang, Z. P. Guo, and W. I. Cho, J. Solid State Electrochem. 16, 2011 (2012). https://doi.org/10.1007/s10008-011-1611-5
  29. Y. L. Qi, Y. D. Huang, D. Z. Jia, S. J. Bao, and Z. P. Guo, Electrochim. Acta 54, 4772 (2009). https://doi.org/10.1016/j.electacta.2009.04.010
  30. X. F. Guo, C. Y. Wang, M. M. Chen, J. Z. Wang, and J. M. Zheng, J. Power Sources 214, 107 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.097
  31. L. Wang, Z. L. Zhang, G. C. Liang, X. Q. Ou, and Y. Q. Xu, Power Technol. 215, 79 (2012).
  32. L. X. Yang and L. J. Gao, J. Alloy Compd. 485, 93 (2009). https://doi.org/10.1016/j.jallcom.2009.05.151
  33. H. S. Li, L. F. Shen, X. G. Zhang, J. Wang, P. Nie, Q. Che, and B. Ding, J. Power Sources 221, 122 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.032
  34. H. Q. Zhang, Q. J. Deng, C. X. Mou, Z. L. Huang, Y. Wang, A. J. Zhou, and J. Z. Li, J. Power Sources 239, 538 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.013
  35. C. Y. Wu, Y. X. Wang, J. Xie, G. S. Cao, T. J. Zhu, and X. B. Zhao, J. Electrochem. Soc. 16, 3915 (2012).
  36. W. Fang, P. J. Zuo, Y. L. Ma, X. Q. Cheng, L. X. Liao, and G. P. Yin, Electrochim. Acta 94, 294 (2013). https://doi.org/10.1016/j.electacta.2013.01.132
  37. X. Li, M. Z. Qu, and Z. L. Yu, Solid State Ionics 181, 635 (2010). https://doi.org/10.1016/j.ssi.2010.02.030
  38. X. Li, M. Z. Qu, Y. J. Huai, and Z. L. Yu, Electrochim. Acta 55, 2978 (2010). https://doi.org/10.1016/j.electacta.2010.01.015
  39. H. F. Xiang, B. B. Tian, P. C. Lian, Z. Li, and H. H. Wang, J. Alloy Compd. 509, 7205 (2011). https://doi.org/10.1016/j.jallcom.2011.04.065
  40. H. Y. Yu, X. F. Zhang, A. F. Jalbout, X. D. Yan, X. M. Pan, H. M. Xie, and R. S. Wang, Electrochim. Acta 53, 4200 (2008). https://doi.org/10.1016/j.electacta.2007.12.052
  41. C. T. Hsieh, B. S. Chang, J. Y. Lin, and R. S. Juang, J. Alloy Compd. 513, 393 (2012). https://doi.org/10.1016/j.jallcom.2011.10.055
  42. S. H. Huang, Z. Y. Wen, J. C. Zhang, and X. L. Yang, Electrochim. Acta 52, 3704 (2007). https://doi.org/10.1016/j.electacta.2006.10.044
  43. S. H. Huang, Z. Y. Wen, B. Lin, J. D. Han, and X. G. Xu, J. Alloy Compd. 457, 400 (2008). https://doi.org/10.1016/j.jallcom.2007.02.127
  44. J. W. Zhang, J. W. Zhang, W. Cai, F. L. Zhang, L. G. Yu, Z. S. Wu, and Z. J. Zhang, J. Power Sources 211, 133 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.088
  45. J. Lu, C. Y. Nan, Q. Peng, and Y. D. Li, J. Power Sources 202, 246 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.032
  46. H. L. Wu, Y. D. Huang, D. Z. Jia, Z. P. Guo, and M. Miao, J. Nanopart. Res. 14, 713 (2012). https://doi.org/10.1007/s11051-011-0713-4
  47. G. Y. Liu, H. Y. Wang, G. Q. Liu, Z. Z. Yang, B. Jin, and Q. C. Jiang, J. Power Sources 220, 84 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.087
  48. M. R. Jo, Y. S. Jung, and Y. M. Kang, Nanoscale 4, 6870 (2012). https://doi.org/10.1039/c2nr31675g
  49. L. Wang, Q. Z. Xiao, Z. H. Li, G. T. Lei, P. Zhang, and L. J. Wu, J. Solid State Electrochem. 16, 3307 (2012). https://doi.org/10.1007/s10008-012-1776-6
  50. Z. S. Hong, T. B. Lan, H. X. Zhang, L. L. Jiang, and M. D. Wei, Funct. Mater. Lett. 4, 389 (2011). https://doi.org/10.1142/S1793604711002287
  51. L. Yu, H. B. Wu, and X. W. Lou, Adv. Mater. 25, 2296 (2013). https://doi.org/10.1002/adma.201204912
  52. J. Z. Chen, L. Yang, S. H. Fang, and Y. F. Tang, Electrochim. Acta 55, 6596 (2010). https://doi.org/10.1016/j.electacta.2010.06.015
  53. S. H. Yu, A. Pucci, T. Herntrich, M. G. Willinger, S. H. Baek, Y. E. Sung, and N. Pinna, J. Mater. Chem. 21, 806 (2011). https://doi.org/10.1039/c0jm03064c
  54. N. D. He, B .S. Wang, and J. J. Huang, J. Solid State Electrochem. 14, 1241 (2010). https://doi.org/10.1007/s10008-009-0933-z
  55. S. L. Chou, J. Z. Wang, H. K. Liu, and S. X. Dou, J. Phys. Chem. C 115, 16220 (2011). https://doi.org/10.1021/jp2039256
  56. D. Shao, J. R. He, Y. Luo, W. Liu, X. Y. Yu, and Y. P. Fang, J. Solid State Electrochem. 16, 2047 (2012). https://doi.org/10.1007/s10008-011-1604-4
  57. Y. S. Lin and J. G. Duh, J. Power Sources 196, 10698 (2011). https://doi.org/10.1016/j.jpowsour.2011.09.007
  58. J. J. Huang and Z. Y. Jiang, Electrochem. Solid-State Lett. 11, A116 (2008). https://doi.org/10.1149/1.2917585

Cited by

  1. Li4Ti5O12/Ketjen Black with open conductive frameworks for high-performance lithium-ion batteries vol.201, 2016, https://doi.org/10.1016/j.electacta.2016.03.128