• Title/Summary/Keyword: Doped metal oxide

Search Result 145, Processing Time 0.025 seconds

Codoped ZnO films by a co-spray deposition technique for photovoltaic applications

  • Zhou, Bin;Han, Xiaofei;Tao, Meng
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.97-104
    • /
    • 2014
  • A co-spray deposition technique has been developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e., the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with F and Al have been successfully synthesized, in which F is incompatible with Al. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, $NH_4F$. The second solution contained the Zn and Al precursors, $Zn(O_2CCH_3)_2$ and $AlCl_3$. The deposition was carried out at $500^{\circ}C$ on soda-lime glass in air. A minimum sheet resistance, $55.4{\Omega}/{\square}$, was obtained for Al and F codoped ZnO films after vacuum annealing at $400^{\circ}C$, which was lower than singly-doped ZnO with either Al or F. The transmittance for the codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties for photovoltaic applications.

Temperature vs. Resistance Characteristics by Dopants of VO2 Thick-Film Critical Temperature Sensors (불순물 첨가에 따른 VO2 후막 급변온도센서의 온도-저항 특성)

  • Choi, Jung Bum;Kang, Chong Yun;Yoon, Seok-Jin;Yoo, Kwang Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.337-341
    • /
    • 2014
  • For various additives doped-$VO_2$ critical temperature sensors using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were systematically investigated. As a starting material of $VO_2$ sensor, vanadium pentoxide ($V_2O_5$) powders were used, and CaO, SrO, $Bi_2O_3$, $TiO_2$, and PbO dopants were used, respectively. The $V_2O_5$ powders with dopants were mixed with a vehicle to form paste. This paste was silk screen-printed on $Al_2O_3$ substrates and then $V_2O_5$-based thick films were heat-treated at $500^{\circ}C$ for 2 hours in $N_2$ gas atmosphere for the reduction to $VO_2$. From X-ray diffraction analysis, $VO_2$ phases for pure $VO_2$, and CaO and SrO-doped $VO_2$ thick films were confirmed and their grain sizes were 0.57 to $0.59{\mu}m$. The on/off resistance ratio of the $VO_2$ sensor in phase transition temperature range was $5.3{\times}10^3$ and that of the 0.5 wt.% CaO-doped $VO_2$ sensor was $5.46{\times}10^3$. The presented critical temperature sensors could be commercialized for fire-protection and control systems.

Transparent Electrode Characteristics of SnO2/AgNi/SnO2 Multilayer Structures (SnO2/AgNi/SnO2 다중층 구조의 투명 전극 특성)

  • Min-Ho Hwang;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.500-506
    • /
    • 2024
  • The transparent electrode characteristics of the SnO2/AgNi/SnO2 (OMO) multilayer structures prepared by sputtering were investigated according to the annealing temperature. Ni-doped Ag of various compositions was selected as the metal layer and heat treatment was performed at 100~300℃ to evaluate the thermal stability of the metals. The manufactured OMO multilayer structures were heat treated for 6 hours at 400~600℃ in an N2 atmosphere. The structural, electrical, and optical properties of the OMO structures before and after annealing were evaluated and analyzed using a UV-VIS spectrophotometer, 4-point probe, XPS, FE-SEM, etc. OMO with Ni-doped Ag shows improved performance due to the reduction of structural defects of Ag during annealing, but OMO structure with pure Ag shows degradation characteristics due to Ag diffusion into the oxide layer during high-temperature annealing. The figure of merit (FOM) of SnO2/Ag/SnO2 was highest at room temperature and gradually decreased as the heat treatment temperature increased. On the other hand, the FOM value of SnO2/AgNi/SnO2 mostly showed its maximum value at high temperature(~550℃). In particular, the FOM value of SnO2/Ag-Ni (3.2 at%)/SnO2 was estimated to be approximately 2.38×10-2-1. Compared to transparent electrodes made of other similar materials, the FOM value of the SnO2/Ag-Ni (3.2 at%)/SnO2 multilayer structure is competitive and is expected to be used as an alternative transparent conductive electrode in various devices.

Fabrication and Characterization of Hydrogen Getter Based on Palladium Oxide Doped Nanoporous SiO2/Si Substrate (PdOx가 도핑된 나노 기공구조 SiO2/Si 기반의 수소 게터 제작 및 특성평가)

  • Eom, Nu Si A;Lim, Hyo Ryoung;Choi, Yo-Min;Jeong, Young-Hun;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.573-577
    • /
    • 2014
  • The existing metal getters are invariably covered with thin oxide layers in air and the native oxide layer must be dissolved into the getter materials for activation. However, high temperature is needed for the activation, which leads to unavoidable deleterious effects on the devices. Therefore, to improve the device efficiency and gas-adsorption properties of the device, it is essential to synthesize the getter with a method that does not require a thermal activation temperature. In this study, getter material was synthesized using palladium oxide (PdOx) which can adsorb $H_2$ gas. To enhance the efficiency of the hydrogen and moisture absorption, a porous layer with a large specific area was fabricated by an etching process and used as supporting substrates. It was confirmed that the moisture-absorption performance of the $SiO_2/Si$ was characterized by water vapor volume with relative humidity. The gas-adsorption properties occurred in the absence of the activation process.

Metal Oxide-Based Heterojunction Broadband Photodetector (산화물 반도체 기반의 이종접합 광 검출기)

  • Lee, Sang-eun;Lee, Gyeong-Nam;Ye, Sang-cheol;Lee, Sung-ho;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.165-170
    • /
    • 2018
  • In this study, double-layered TCO (transparent conductive oxide) films were produced by depositing two distinct TCO materials: $SnO_2$ works as an n-type layer and ITO (indium-doped tin oxide) serves as a transparent conductor. Both transparent conductive oxide-films were sequentially deposited by sputtering. The electrical and optical properties of single-layered TCO films ($SnO_2$) and double-layered TCO ($ITO/SnO_2$) films were investigated. A TCO-embedding photodetector was realized through the formation of an $ITO/SnO_2/p-Si/Al$ layered structure. The remarkably high rectifying ratio of 400.64 was achieved with the double-layered TCO device, compared to 1.72 with the single-layered TCO device. This result was attributed to the enhanced electrical properties of the double-layered TCO device. With respect to the photoresponses, the photocurrent of the double-layered TCO photodetector was significantly improved: 1,500% of that of the single-layered TCO device. This study suggests that, due to the electrical and optical benefits, double-layered TCO films are effective for enhancing the photoresponses of TCO photodetectors. This provides a useful approach for the design of photoelectric devices, including solar cells and photosensors.

$SnO_2$ Dispersion of Sintered Body in $In_2O_3-SnO_2$ Binary System ($In_2O_3-SnO_2$ 이성분계 소결특성에 있어서 $SnO_2$ 분산성)

  • Chun, Tae-Jin;Park, Wan-Soo;Cho, Muyung-Jin;Kim, Jong-Su;Kim, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.198-198
    • /
    • 2006
  • Tin doped $In_2O_3$ sputtering target is widely used to produce a various kinds of flat panel display because of high transmittance in visible region and high electrical conductivity. In2O3 and SnO2 powders were prepared by a homogeneous precipitation method using metal source, respectively, the calcining and sintering behavior of the indium-tin oxide(In2O3-SnO2) composite powders were studied. The tin oxide(SnO2) dispersion condition in ITO sputtering target was improved by increasing calcining temperature. And the tin oxide dispersion was also improved by reducing the tin oxide contents in the ITO target from 30 to 5wt%. SnO2 dispersion and densification of ITO target is very difficult to control due to sublimation of SnO2 at over 1150C.

  • PDF

Advanced Low-k Materials for Cu/Low-k Chips

  • Choi, Chi-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.71-71
    • /
    • 2012
  • As the critical dimensions of integrated circuits are scaled down, the line width and spacing between the metal interconnects are made smaller. The dielectric film used as insulation between the metal lines contributes to the resistance-capacitance (RC) time constant that governs the device speed. If the RC time delay, cross talk and lowering the power dissipation are to be reduced, the intermetal dielectric (IMD) films should have a low dielectric constant. The introduction of Cu and low-k dielectrics has incrementally improved the situation as compared to the conventional $Al/SiO_2$ technology by reducing both the resistivity and the capacitance between interconnects. Some of the potential candidate materials to be used as an ILD are organic and inorganic precursors such as hydrogensilsequioxane (HSQ), silsesquioxane (SSQ), methylsilsisequioxane (MSQ) and carbon doped silicon oxide (SiOCH), It has been shown that organic functional groups can dramatically decrease dielectric constant by increasing the free volume of films. Recently, various inorganic precursors have been used to prepare the SiOCH films. The k value of the material depends on the number of $CH_3$ groups built into the structure since they lower both polarity and density of the material by steric hindrance, which the replacement of Si-O bonds with Si-$CH_3$ (methyl group) bonds causes bulk porosity due to the formation of nano-sized voids within the silicon oxide matrix. In this talk, we will be introduce some properties of SiOC(-H) thin films deposited with the dimethyldimethoxysilane (DMDMS: $C_4H_{12}O_2Si$) and oxygen as precursors by using plasma-enhanced chemical vapor deposition with and without ultraviolet (UV) irradiation.

  • PDF

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Zn/Co ZIF derived synthesis of Co-doped ZnO nanoparticles and application as high-performance trimethylamine sensors (Co가 도핑된 ZnO 나노입자의 Zn/Co ZIF 유도 합성 및 고성능 트리메틸아민 센서로의 응용)

  • Yoon, Ji-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.222-227
    • /
    • 2018
  • $Zn_{1-x}Co_x$ Zeolitic Imidazolate Framework (ZIF) (x = 0~0.05) were prepared by the co-precipitation of $Zn^{2+}$ and $Co^{2+}$ using 2-methylimidazole, which were converted into pure and Co-doped ZnO nanoparticles by heat treatment at $600^{\circ}C$ for 2 h. Homogeneous Zn/Co ZIFs were achieved at x < 0.05 owing to the strong coordination of the imidazole linker to $Zn^{2+}$ and $Co^{2+}$, facilitating atomic-scale doping of Co into ZnO via annealing. By contrast, heterogeneous Zn/Co ZIFs were formed at $x{\geq}0.05$, resulting in the formation of $Co_3O_4$ second phase. To investigate the potential as high-performance gas sensors, the gas sensing characteristics of pure and Co-doped ZnO nanoparticles were evaluated. The sensor using 3 at% Co-doped ZnO exhibited an unprecedentedly high response and selectivity to trimethylamine, whereas pure ZnO nanoparticles did not. The facile, bimetallic ZIF derived synthesis of doped-metal oxide nanoparticles can be used to design high-performance gas sensors.

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina;Lim, Ju Won;Lim, Keun Yong;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.