• Title/Summary/Keyword: Domain deformation

Search Result 226, Processing Time 0.021 seconds

Application of Nano-TDR Health Monitoring System in Civil Engineering (나노-TDR센서를 이용한 토목구조물 모니터링 시스템)

  • Han, Heui-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.93-100
    • /
    • 2009
  • This study presents reasonable relationships to estimate the deformation based on beam mechanism analysis and TDR(Time Domain Reflectometry) data. To declar the length points of co-axial cable installed in civil structure, Nano material ($BaTiO_3$ powders and silver mixture) is used on co-axial cables. From the laboratory test, nano material could make the correct information about attached cable points on beam, and TDR sensor system and Fourier series (data filter) found out the deformation of beam. Therefore it is concluded that the correct deformed information of beam were acquired by Nano-TDR and Fourier filter, they are much more effective to apply at health monitoring system in civil structure compared to conventional TDR or Fiber Optic Sensor (FOS) systems.

Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure (원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용)

  • Lee, Hyeok Ju;Lim, Jae Sung;Moon, Il Hwan;Kim, Jae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

Evaluation of bonding state of shotcrete lining using nondestructive testing methods - experimental analysis (비파괴 시험 기법을 이용한 숏크리트 배면 접착상태 평가에 관한 실험적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.71-83
    • /
    • 2009
  • Shotcrete is an important primary support for tunnelling in rock. The quality control of shotcrete is a core issue in the safe construction and maintenance of tunnels. Although shotcrete may be applied well initially onto excavated rock surfaces, it is affected by blasting, rock deformation and shrinkage and can debond from the excavated surface, causing problems such as corrosion, buckling, fracturing and the creation of internal voids. This study suggests an effective non-destructive evaluation method of the tunnel shotcrete bonding state applied onto hard rocks using the impact-echo (IE) method and ground penetration radar (GPR). To verify previous numerical simulation results, experimental study carried out. Generally, the bonding state of shotcrete can be classified into void, debonded, and fully bonded. In the laboratory, three different bonding conditions were modeled. The signals obtained from the experimental IE tests were analyzed at the time domain, frequency domain, and time-frequency domain (i.e., the Short- Time Fourier transform). For all cases in the analyses, the experimental test results were in good agreement with the previous numerical simulation results, verifying this approach. Both the numerical and experimental results suggest that the bonding state of shotcrete can be evaluated through changes in the resonance frequency and geometric damping ratio in a frequency domain analysis, and through changes in the contour shape and correlation coefficient in a time-frequency analysis: as the bonding state worsens in hard rock condition, the autospectral density increases, the geometric damping ratio decreases, and the contour shape in the time-frequency domain has a long tail parallel to the time axis. The correlation coefficient can be effectively applied for a quantitative evaluation of bonding state of tunnel shotcrete. Finally, the bonding state of shotcrete can be successfully evaluated based on the process suggested in this study.

The Characteristics of Hot Hydrostatic Extrusion of AZ Magnesium Alloy (AZ계 마그네슘 합금의 열간 정수압 압출특성 연구)

  • Yoon, D.J.;You, B.S.;Lim, S.J.;Kim, E.Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.62-65
    • /
    • 2008
  • Extrusion characteristics of Mg alloys were studied experimentally. The Al-Zn-Mg alloys, AZ31, AZ6l, AZ80, and AZ91 were extruded with hot hydrostatic extrusion process. The hydrostatic process was efficient to reduce surface friction and extend steady state region in extrusion which made it more convenient to examine deformation behavior of the alloys avoiding the disturbance caused by temporary contact state between billet and die, and billet and container. High pressure was cooperative to expand forming limit of the alloys which were applied on the billet during the extrusion process. Extrusion limits were traced in temperature and extrusion speed domain with changing composition of the alloying elements. Effects of process parameters on extrusion load and microstructure evolution were investigated also.

  • PDF

Vibration Analysis of a Rotating Cantilever Beam Undergoing Impulsive Force Using Wavelet Transform (Wavelet Transform을 이용한 충격력을 받는 회전하는 외팔 보의 진동 특성 해석)

  • Park, Ho-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1024-1032
    • /
    • 2008
  • The vibration characteristics of a rotating cantilever beam undergoing impulsive force are investigated using wavelet transformation. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. The vibration characteristics of the beam can be analyzed in time-frequency domain with the wavelet transform method. Therefore, the effects of the impulsive force on the transient vibration characteristics of the beam can be investigated more effectively.

The Ultimate Strength Analysis of the Welded Plate Elements having Resiual Stresses and Strains (잔류응력 및 변형을 고려한 용접평판부재의 최종강도 해석)

  • 김병일
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2000
  • For the rational and economic design of the structural elements of ships which is built using welding, the ultimate strength analyses of the plates having initial imperfections, such as welding residual stresses and strains, are needful. The welding deformation usually relied on approximative equations or based on expert's experience. But in this paper, for the thermal elasto-plastic analysis of plates, the finite element analysis was performed, based on initial strain method. In formulating the incremental analysis, unbalanced force terns were included. In the plastic domain during the incremental process, the 2nd order terns stress increment and yield stress increment were considered, so that time increment could be controlled for a more stable solution. The ultimate strength analysis program of the plates having initial imperfections was made. The ultimate strength analysis was carried out based on the results of the welding deformations of this paper. In the ultimate strength analysis the Rayleigh-Ritz method based on the minimum potential theory was used.

  • PDF

Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics

  • Hashimoto, Gaku;Noguchi, Hirohisa
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.251-278
    • /
    • 2008
  • In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method, the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge.

Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force

  • Lata, Parveen;Singh, Sukhveer
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • The present article is concerned about the study of disturbances in a homogeneous nonlocal magneto-thermoelastic medium under the combined effects of hall current, rotation and two temperatures. The model under assumption has been subjected to normal force. Laplace and Fourier transform have been used for finding the solution to the field equations. The analytical expressions for conductive temperature, stress components, normal current density, transverse current density and displacement components have been obtained in the physical domain using a numerical inversion technique. The effects of hall current and nonlocal parameter on resulting quantities have been depicted graphically. Some particular cases have also been figured out from the current work. The results can be very important for the researchers working in the field of magneto-thermoelastic materials, nonlocal thermoelasticity, geophysics etc.

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF

AE Characteristic under Tensile of Polyethylene for Low Pressure Pipe (저압배관용 폴리에틸렌의 인장시험시 발생한 음향방출 특성)

  • Lee, S.Y.;Jeong, J.H.;Ahn, S.H.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.82-85
    • /
    • 2003
  • This study is to look at the effect for deformation of Polyethylene, on the wave forms produced by tensile test. Signals collected were then classified visually into three types according to their shapes in the time and frequency domain. Each type should contain signals which could be correlated to a certain micro failure mechanism that occurs during the tensile process. The result showed that the acoustic emission method could be effectively used for analysis of fracture mechanism in Polyethylene structures.

  • PDF