• Title/Summary/Keyword: Dog-bone

Search Result 294, Processing Time 0.021 seconds

Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.451-465
    • /
    • 2020
  • This paper presents experimental and numerical investigations on mechanical properties of ultra-high-performance fiber-reinforced concrete (UHPFRC) with four types of steel fibers; micro steel (MS), crimped (C), round crimped (RC) and hooked-end (H), in two fiber contents of 1% and 2% (by volume) and two lengths of 13 and 30 mm. Compression, direct tension, and four-point bending tests were carried out on four types of specimens (prism, cube, dog-bone and cylinder), to study tensile and flexural strength, fracture energy and modulus of elasticity. Results were compared with UHPC specimens without fibers, as well as with available equations for the modulus of elasticity. Specimens with MS fibers had the best performance for all mechanical properties. Among macro fibers, RC had better overall performance than H and C fibers. Increased fibers improved all mechanical properties of UHPFRC, except for modulus of elasticity, which saw a negligible effect (mostly less than 10%). Moreover, nonlinear finite element simulations successfully captured flexural response of UHPFRC prisms. Finally, nonlinear regression models provided reasonably well predictions of flexural load-deflection behavior of tested specimens (coefficient of correlation, R2 over 0.90).

Anatomy of the diaphyseal nutrient foramen in the long bones of the pectoral limb of German Shepherds

  • Sim, Jeoung-Ha;Ahn, Dongchoon
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • This study investigated the anatomy of the nutrient foramen (NF) in German Shepherds by recording the number, site, position, and direction of penetration of the nutrient canal (NC) in the humerus, radius, and ulna of 50 individuals. The site index of the nutrient foramen (SI) was calculated as the ratio of the length to the NF site from the proximal end to the greatest length of the bone. The NF diameter was measured using different sized needles. Most humeri had only one NF on the caudal surface, particularly on the lateral supracondylar crest, or distal cranial surface. All radii had one NF, usually on the caudal surface, while most ulnae had one NF located on either the cranial or lateral surfaces. The SI and NF diameters were 58.0~59.5% and 0.73~0.78 mm in the humerus, 30.4~30.9% and 0.74~0.76 mm in the radius, and 29.3~29.8% and 0.67~0.68 mm in the ulna, respectively. With the exception of the relatively proximal NF of the radius, the direction of penetration followed Berard's rule. This study provides novel information on the location and diameter of the NF and direction of the NC in the long bones of the pectoral limb of German Shepherds.

Evaluation of RFID System for Location Based Services in the Building (건물 내의 위치기반 서비스를 위한 RFID 시스템)

  • Nam, Sang-Yep;An, Jin-Ung;Kim, Dong-Han
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • In this paper, different RFID tag types compliant with UHF frequency based RFID system were chosen to build RFID tag embedded concrete blocks. Then, by placing the tags in systematically varied depths of a concrete block, we could measure the RF signal attenuation pattern as the performance indicator of a specific concrete embedded RFID system. Experiments show that the concrete mixing ratio makes no significant difference in tag detection performance level. The significance of the developed RFID system lies in its capability of eliminating GPS's error and shadow area as well as providing smart infrastructure for supporting truly pervasive ubiquitous computing applications especially in outdoor environment.

Design and Fabrication of a Dual Polarized Load-bearing Microstrip Antenna (이중편파 하중 지지형 마이크로스트립 안테나 설계 및 제작)

  • 이라미;이정수;박위상;박현철;황운봉
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.125-135
    • /
    • 2001
  • A 8$\times$4 microstrip antenna array is designed at 5.3 GHz and its characteristics are investigated with respect to the application in dual polarized synthetic aperture radars. The design is focused on the achievement of a wide bandwidth, a high polarization purity, a low loss, a good isolation and some mechanical requirements suitable for the application. The antenna is fed by a -3 dB tapered feed network, and is composed of dual polarized SSFIP (Strip-Slot-Foam-Inverted Patch) elements with honeycomb and shielding plane. Simulation results for the antenna array are presented and compared with measurements. It is observed that the antenna shows a bandwidth of 80 MHz, a polarization isolation better than 20 dB, an isolation of 40 dB, and good mechanical characteristics.

  • PDF

An investigation of non-uniform metal flow during rectangular battery case using impact extrusion process (충격압출 공정을 이용한 직사각형 배터리 케이스 성형 시 불균일 금속 유동 발생 원인 고찰)

  • Lim, Jae-Hyuk;Kim, Yong-bae;Lee, Jong-sup
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.24-28
    • /
    • 2016
  • In this study, relevant to impact extrusion process of the rectangular batter case for electric vehicles, numerical and experimental analyses were conducted to reduce the earring defects induced in the unevenness of metal flow. Since the earring is caused by the non-uniform metal flow induced in the friction and aspect ratio in the bottom section. As a way to reduce the earring, variable land die concept was applied. In order to analyze numerically the complex metal flow by using commercial finite element package, DEFORM 3D, impact extrusion process was simplified in upsetting mode at bottom section and extrusion mode at land section. The impact extrusion experiments were conducted to verify the assessment of process parameter for impact extrusion. As results, variable land die which has longer longitudinal section makes reduce earring defects. In addition, it was confirmed that the effect that slug shape like dog-bone also can reduce the earring. This study is expected to be able to present the useful design guidelines for manufacturing the battery case.

Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill (열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측)

  • Lee S. H.;Kim D. H.;Byon S. M.;Park H. D.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.432-435
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology to achieve continuous production between the steelmaking and hot rolling processes. Conventionally, a vertical roll process has been used to achieve extensive width reduction. However, it is impossible to avoid the defects such as dog-bone, fish tail and camber. The deformation behavior in the width sizing process is more favorable than that in conventional vertical rolling edger, i.e. the material better flows toward the center of slab. This study is carried out to investigate the deformation of slab by two-step sizing press. The FE-simulation is utilized to predict plastic deformation mode in compression by a sizing press of slabs far hot rolling. In this paper, the various causes of the asymmetrical rolling phenomena are mentioned for the purpose of understanding of rolling conditions. Analytical results of slab-deformation by sizing press are presented below in this study.

  • PDF

Prediction of Fracture Strains for DP980 Steel Sheets for a Wide Range of Loading Paths (다양한 하중경로에서의 DP980 강판의 파단변형률 예측에 관한 연구)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.176-180
    • /
    • 2015
  • The current study is concerned with the prediction of fracture strains for DP980 steel sheets over a wide range of loading paths. The use of DP980 steel is increasing significantly in automotive industries for enhanced safety and higher fuel efficiency. The material behavior of advanced high-strength steels (AHSSs) sheets sometimes show unpredictable and sudden fracture during sheet metal forming. A modified Lou-Huh ductile fracture criterion is utilized to predict the formability of AHSSs because the conventional forming limit diagram (FLD) constructed based on necking is unable to evaluate the formability of AHSSs sheets. Fracture loci were extracted from three dimensional fracture envelopes by assuming the plane-stress condition to evaluate equivalent plastic strains at the onset of fracture for a wide range of loading paths. Three different types of specimens -- pure shear, dog-bone and plane strain grooved -- were utilized for tensile testing to calibrate the fracture model of DP980 steel sheets. Fracture strains of each loading path were evaluated such that there shows little deviation between fracture strains predicted from the fracture model and the experimental measurements. From the comparison, it is clearly shown that the three dimensional fracture envelopes can accurately predict the onset of the fracture of DP980 steel sheets for complicated loading conditions from compressive loading to shear loading and to equibiaxial tensile loading.

Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

  • Paik, Jeom-Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.39-49
    • /
    • 2009
  • The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW), laser welding and friction stir welding (FSW), FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base) alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009), jointly funded by its member agencies.

Bone Marrow Toxicity Caused by Estrogen Toxicity in a Yorkshire Terrier with Leydig Cell Tumor

  • Kim, Yoon-Hee;Ko, Kyu-Ryeon;No, Mi-Young;Kim, Jae-Hoon;Choi, Ul-Soo
    • Journal of Veterinary Clinics
    • /
    • v.36 no.2
    • /
    • pp.129-131
    • /
    • 2019
  • A 15-year-old intact Yorkshire terrier was presented with anorexia, lethargy, and a pale mucous membrane. A physical examination one year ago revealed right testis mass and subcutaneous petechia. Blood work revealed severe thrombocytopenia and mild anemia, and no abnormalities were found in serum chemistry or ultrasonography. The preoperative serum estrogen concentration was moderately elevated. The enlarged testis was surgically removed. A well-encapsulated mass composed of polyhedral or round with abundant eosinophilic cytoplasm containing fine granular or vacuolation were found in a histological examination of the removed tissue. The nuclei of tumor cells were round, and mitotic figures were low but neoplastic cells showed a mild invasive tendency to adjacent tissues with contained neoplastic cell emboli in one lymphatic lumen. A diagnosis of a malignant Leydig cell tumor was made. The patient recovered from surgery uneventfully, but his condition worsened despite repeated transfusions and supportive therapy, and he was euthanized according to the owner's decision. Leydig cell tumor should be included in estrogen toxicity associated with testicular mass.

Displacement-recovery-capacity of superelastic SMA fibers reinforced cementitious materials

  • Choi, Eunsoo;Mohammadzadeh, Behzad;Hwang, Jin-Ha;Lee, Jong-Han
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.157-171
    • /
    • 2019
  • This study investigated the effects of the geometric parameters of superelastic shape memory alloy (SE SMA) fibers on the pullout displacement recovering and self-healing capacity of reinforced cementitious composites. Three diameters of 0.5, 0.7 and 1.0 mm and two different crimped lengths of 5.0 and 10.0 mm were considered. To provide best anchoring action and high bond between fiber and cement mortar, the fibers were crimped at the end to create spear-head shape. The single fiber cement-based specimens were manufactured with the cement mortar of a compressive strength of 84 MPa with the square shape at the top and a dog-bone shape at the bottom. The embedded length of each fiber was 15 mm. The pullout test was performed with displacement control to obtain monotonic or hysteretic behaviors. The results showed that pullout displacements were recovered after fibers slipped and stuck in the specimen. The specimens with fiber of larger diameter showed better displacement recovering capacity. The flag-shaped behavior was observed for all specimens, and those with fiber of 1.0 mm diameter showed the clearest one. It was observed that the length of fiber anchorage did not have a significant effect on the displacement recovery, pullout resistance and self-healing capacity.