• Title/Summary/Keyword: Document information retrieval

Search Result 413, Processing Time 0.024 seconds

Retrieval methodology for similar NPP LCO cases based on domain specific NLP

  • No Kyu Seong ;Jae Hee Lee ;Jong Beom Lee;Poong Hyun Seong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.421-431
    • /
    • 2023
  • Nuclear power plants (NPPs) have technical specifications (Tech Specs) to ensure that the equipment and key operating parameters necessary for the safe operation of the power plant are maintained within limiting conditions for operation (LCO) determined by a safety analysis. The LCO of Tech Specs that identify the lowest functional capability of equipment required for safe operation for a facility must be complied for the safe operation of NPP. There have been previous studies to aid in compliance with LCO relevant to rule-based expert systems; however, there is an obvious limit to expert systems for implementing the rules for many situations related to LCO. Therefore, in this study, we present a retrieval methodology for similar LCO cases in determining whether LCO is met or not met. To reflect the natural language processing of NPP features, a domain dictionary was built, and the optimal term frequency-inverse document frequency variant was selected. The retrieval performance was improved by adding a Boolean retrieval model based on terms related to the LCO in addition to the vector space model. The developed domain dictionary and retrieval methodology are expected to be exceedingly useful in determining whether LCO is met.

Human Evaluation of Keyword Extraction System Using Lexical Chains (어휘 체인을 이용한 키워드 추출 시스템 성능 평가)

  • 강보영;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.190-192
    • /
    • 2001
  • In Information Retrieval or Digital Library, one of the most important factors is to find out the exact information which users need. Exact keywords which represent the content of a document can be much help to find the exact information. In this paper, we evaluate an efficient keyword extraction system by recall and precision. The results presented here are based on the human evaluations of the quality and the appropriateness of keywords.

  • PDF

Designing Hierarchical User Interface Model for Browsing the Knowledge Structure of a Single Document Using MDS (MDS를 이용한 개별문서의 계층적 지식구조 브라우징 인터페이스 설계)

  • Han, Seung-Hee;Lee, Jae-Yun
    • Journal of Information Management
    • /
    • v.35 no.3
    • /
    • pp.125-138
    • /
    • 2004
  • The purpose of this study is to propose a hierarchical user interfaces for browsing the knowledge structure of a single document. To generate the hierarchical knowledge structure, hierarchical term clustering and cluster representative term selection were performed with a single thesis in information science field, and the result was applied to design the interfaces which browse a single document hierarchically using multidimensional scaling. The interfaces can be applied to develop the user-friendly information retrieval system.

Design and Implementation of Supporting System of a Self-Directed Learning using Virtual Document Concept (가상문서를 개념을 활용한자기 주도적 학습지원 시스템의 설계 및 구현)

  • Noh, Jin-Soon;Lee, Yong-Bae;Myaeng, Sung-Hyon
    • Journal of The Korean Association of Information Education
    • /
    • v.6 no.2
    • /
    • pp.234-245
    • /
    • 2002
  • A new era has come where high quality educational materials can be acquired easily through the World Wide Web. These materials, however, need to be refined and streamlined to maximize their effect on education. In order to provide such a streamlined flow, we need to be able to re-organize documents, which exist independent of each other on the Web, in a way that maintains their appropriate order in the right context to satisfy educational purposes. In addition, we should be able to provide supplementary explanations or missing information to the organized materials for smooth connections among them. In order to meet the requirements, we employed the virtual document concept that allows us to reuse existing documents for educational purposes. By providing a retrieval engine for virtual documents, we attempt to induce self-directed learning based on document retrieval, suitable for the level and purpose of students.

  • PDF

A Fuzzy Retrieval System to Facilitate Associated Learning in Problem Banks (문제 은행에서 연상학습을 지원하는 퍼지 검색 시스템)

  • Choi, Jae-hun;Kim, ji-Suk;Cho, Gi-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.278-288
    • /
    • 2002
  • This paper presents a design and implementation of fuzzy retrieval system that could support an associated learning in problem banks. It tries to retrieve some of the problems conceptually related to specific semantics described by user's queries. In particular, the problem retrieval system employs a fuzzy thesaurus which represents relationships between domain dependent vocabularies as fuzzy degrees. It would keep track of characteristics of the associated learning, which should guarantee high recall and acceptable precision for retrieval effectiveness. That is, since the thesaurus could make a vocabulary mismatch problem resolved among query terms and document index terms, this retrieval system could take a chance to effectively support user's associated teaming. Finally, we have evaluated whether the fuzzy retrieval system is appropriate for the associated teaming or not, by means of its precision and recall rate point of view.

Classifying Biomedical Literature Providing Protein Function Evidence

  • Lim, Joon-Ho;Lee, Kyu-Chul
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.813-823
    • /
    • 2015
  • Because protein is a primary element responsible for biological or biochemical roles in living bodies, protein function is the core and basis information for biomedical studies. However, recent advances in bio technologies have created an explosive increase in the amount of published literature; therefore, biomedical researchers have a hard time finding needed protein function information. In this paper, a classification system for biomedical literature providing protein function evidence is proposed. Note that, despite our best efforts, we have been unable to find previous studies on the proposed issue. To classify papers based on protein function evidence, we should consider whether the main claim of a paper is to assert a protein function. We, therefore, propose two novel features - protein and assertion. Our experimental results show a classification performance with 71.89% precision, 90.0% recall, and a 79.94% F-measure. In addition, to verify the usefulness of the proposed classification system, two case study applications are investigated - information retrieval for protein function and automatic summarization for protein function text. It is shown that the proposed classification system can be successfully applied to these applications.

Automatic Spelling Correction for Efficient Data Base Production and Information Retrieval (효율적(效率的)인 데이터베이스 제작(製作)과 정보검색(精報檢索)을 위한 자동철자교정(自動綴字校正))

  • Kim, Byung-Hye
    • Journal of Information Management
    • /
    • v.21 no.1
    • /
    • pp.76-92
    • /
    • 1990
  • This paper discusses automatic spelling correction in a point of view bibliographic Data Base production and information retrieval. Types of commonly detected spelling errors and impact of spelling errors in bibliographic data bases are described here. Document normalization, spelling verification, spelling correction and user interface for general construction of automatic spelling correction systems are described.

  • PDF

A Study of Designing the Intelligent Information Retrieval System by Automatic Classification Algorithm (자동분류 알고리즘을 이용한 지능형 정보검색시스템 구축에 관한 연구)

  • Seo, Whee
    • Journal of Korean Library and Information Science Society
    • /
    • v.39 no.4
    • /
    • pp.283-304
    • /
    • 2008
  • This is to develop Intelligent Retrieval System which can automatically present early query's category terms(association terms connected with knowledge structure of relevant terminology) through learning function and it changes searching form automatically and runs it with association terms. For the reason, this theoretical study of Intelligent Automatic Indexing System abstracts expert's index term through learning and clustering algorism about automatic classification, text mining(categorization), and document category representation. It also demonstrates a good capacity in the aspects of expense, time, recall ratio, and precision ratio.

  • PDF

XML Repository System Using DBMS and IRS

  • Kang, Hyung-Il;Yoo, Jae-Soo;Lee, Byoung-Yup
    • International Journal of Contents
    • /
    • v.3 no.3
    • /
    • pp.6-14
    • /
    • 2007
  • In this paper, we design and implement a XML Repository System(XRS) that exploits the advantages of DBMSs and IRSs. Our scheme uses BRS to support full text indexing and content-based queries efficiently, and ORACLE to store XML documents, multimedia data, DTD and structure information. We design databases to manage XML documents including audio, video, images as well as text. We employ the non-composition model when storing XML documents into ORACLE. We represent structured information as ETID(Element Type Id), SORD(Sibling ORDer) and SSORD(Same Sibling ORDer). ETID is a unique value assigned to each element of DTD. SORD and SSORD represent an order information between sibling nodes and an order information among the sibling nodes with the same element respectively. In order to show superiority of our XRS, we perform various experiments in terms of the document loading time, document extracting time and contents retrieval time. It is shown through experiments that our XRS outperforms the existing XML document management systems. We also show that it supports various types of queries through performance experiments.

An Opinionated Document Retrieval System based on Hybrid Method (혼합 방식에 기반한 의견 문서 검색 시스템)

  • Lee, Seung-Wook;Song, Young-In;Rim, Hae-Chang
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.4
    • /
    • pp.115-129
    • /
    • 2008
  • Recently, as its growth and popularization, the Web is changed into the place where people express, share and debate their opinions rather than the space of information seeking. Accordingly, the needs for searching opinions expressed in the Web are also increasing. However, it is difficult to meet these needs by using a classical information retrieval system that only concerns the relevance between the user's query and documents. Instead, a more advanced system that captures subjective information through documents is required. The proposed system effectively retrieves opinionated documents by utilizing an existing information retrieval system. This paper proposes a kind of hybrid method which can utilize both a dictionary-based opinion analysis technique and a machine learning based opinion analysis technique. Experimental results show that the proposed method is effective in improving the performance.