• Title/Summary/Keyword: Document Feature Vector

Search Result 52, Processing Time 0.025 seconds

An Automatic Spam e-mail Filter System Using χ2 Statistics and Support Vector Machines (카이 제곱 통계량과 지지벡터기계를 이용한 자동 스팸 메일 분류기)

  • Lee, Songwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.592-595
    • /
    • 2009
  • We propose an automatic spam mail classifier for e-mail data using Support Vector Machines (SVM). We use a lexical form of a word and its part of speech (POS) tags as features. We select useful features with ${\chi}^2$ statistics and represent each feature using text frequency (TF) and inversed document frequency (IDF) values for each feature. After training SVM with the features, SVM classifies each email as spam mail or not. In experiment, we acquired 82.7% of accuracy with e-mail data collected from a web mail system.

  • PDF

Genetic Clustering with Semantic Vector Expansion (의미 벡터 확장을 통한 유전자 클러스터링)

  • Song, Wei;Park, Soon-Cheol
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • This paper proposes a new document clustering system using fuzzy logic-based genetic algorithm (GA) and semantic vector expansion technology. It has been known in many GA papers that the success depends on two factors, the diversity of the population and the capability to convergence. We use the fuzzy logic-based operators to adaptively adjust the influence between these two factors. In traditional document clustering, the most popular and straightforward approach to represent the document is vector space model (VSM). However, this approach not only leads to a high dimensional feature space, but also ignores the semantic relationships between some important words, which would affect the accuracy of clustering. In this paper we use latent semantic analysis (LSA)to expand the documents to corresponding semantic vectors conceptually, rather than the individual terms. Meanwhile, the sizes of the vectors can be reduced drastically. We test our clustering algorithm on 20 news groups and Reuter collection data sets. The results show that our method outperforms the conventional GA in various document representation environments.

Texture Feature-Based Language Identification Using Gabor Feature and Wavelet-Domain BDIP and BVLC Features (Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식)

  • Jang, Ick-Hoon;Lee, Woo-Shin;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.76-85
    • /
    • 2011
  • In this paper, we propose a texture feature-based language identification using Gabor feature and wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features. In the proposed method, Gabor and wavelet transforms are first applied to a test image. The wavelet subbands are next denoised by Donoho's soft-thresholding. The magnitude operator is then applied to the Gabor image and the BDIP and BVLC operators to the wavelet subbands. Moments for Gabor magnitude image and each subband of BDIP and BVLC are computed and fused into a feature vector. In classification, the WPCA (whitened principal component analysis) classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method yields excellent language identification with rather low feature dimension for a document image DB.

Keyword Spotting on Hangul Document Images Using Character Feature Models (문자 별 특징 모델을 이용한 한글 문서 영상에서 키워드 검색)

  • Park, Sang-Cheol;Kim, Soo-Hyung;Choi, Deok-Jai
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.521-526
    • /
    • 2005
  • In this Paper, we propose a keyword spotting system as an alternative to searching system for poor quality Korean document images and compare the Proposed system with an OCR-based document retrieval system. The system is composed of character segmentation, feature extraction for the query keyword, and word-to-word matching. In the character segmentation step, we propose an effective method to remove the connectivity between adjacent characters and a character segmentation method by making the variance of character widths minimum. In the query creation step, feature vector for the query is constructed by a combination of a character model by typeface. In the matching step, word-to-word matching is applied base on a character-to-character matching. We demonstrated that the proposed keyword spotting system is more efficient than the OCR-based one to search a keyword on the Korean document images, especially when the quality of documents is quite poor and point size is small.

XML Documents Clustering Technique Based on Bit Vector (비트벡터에 기반한 XML 문서 군집화 기법)

  • Kim, Woo-Saeng
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.10-16
    • /
    • 2010
  • XML is increasingly important in data exchange and information management. A large amount of efforts have been spent in developing efficient techniques for accessing, querying, and storing XML documents. In this paper, we propose a new method to cluster XML documents efficiently. A bit vector which represents a XML document is proposed to cluster the XML documents. The similarity between two XML documents is measured by a bit-wise AND operation between two corresponding bit vectors. The experiment shows that the clusters are formed well and efficiently when a bit vector is used for the feature of a XML document.

Machine Printed and Handwritten Text Discrimination in Korean Document Images

  • Trieu, Son Tung;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • Nowadays, there are a lot of Korean documents, which often need to be identified in one of printed or handwritten text. Early methods for the identification use structural features, which can be simple and easy to apply to text of a specific font, but its performance depends on the font type and characteristics of the text. Recently, the bag-of-words model has been used for the identification, which can be invariant to changes in font size, distortions or modifications to the text. The method based on bag-of-words model includes three steps: word segmentation using connected component grouping, feature extraction, and finally classification using SVM(Support Vector Machine). In this paper, bag-of-words model based method is proposed using SURF(Speeded Up Robust Feature) for the identification of machine printed and handwritten text in Korean documents. The experiment shows that the proposed method outperforms methods based on structural features.

Semantic-based Genetic Algorithm for Feature Selection (의미 기반 유전 알고리즘을 사용한 특징 선택)

  • Kim, Jung-Ho;In, Joo-Ho;Chae, Soo-Hoan
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, an optimal feature selection method considering sematic of features, which is preprocess of document classification is proposed. The feature selection is very important part on classification, which is composed of removing redundant features and selecting essential features. LSA (Latent Semantic Analysis) for considering meaning of the features is adopted. However, a supervised LSA which is suitable method for classification problems is used because the basic LSA is not specialized for feature selection. We also apply GA (Genetic Algorithm) to the features, which are obtained from supervised LSA to select better feature subset. Finally, we project documents onto new selected feature subset and classify them using specific classifier, SVM (Support Vector Machine). It is expected to get high performance and efficiency of classification by selecting optimal feature subset using the proposed hybrid method of supervised LSA and GA. Its efficiency is proved through experiments using internet news classification with low features.

Hybrid Word-Character Neural Network Model for the Improvement of Document Classification (문서 분류의 개선을 위한 단어-문자 혼합 신경망 모델)

  • Hong, Daeyoung;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1290-1295
    • /
    • 2017
  • Document classification, a task of classifying the category of each document based on text, is one of the fundamental areas for natural language processing. Document classification may be used in various fields such as topic classification and sentiment classification. Neural network models for document classification can be divided into two categories: word-level models and character-level models that treat words and characters as basic units respectively. In this study, we propose a neural network model that combines character-level and word-level models to improve performance of document classification. The proposed model extracts the feature vector of each word by combining information obtained from a word embedding matrix and information encoded by a character-level neural network. Based on feature vectors of words, the model classifies documents with a hierarchical structure wherein recurrent neural networks with attention mechanisms are used for both the word and the sentence levels. Experiments on real life datasets demonstrate effectiveness of our proposed model.

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

Design of Automatic Document Classifier for IT documents based on SVM (SVM을 이용한 디렉토리 기반 기술정보 문서 자동 분류시스템 설계)

  • Kang, Yun-Hee;Park, Young-B.
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.186-194
    • /
    • 2004
  • Due to the exponential growth of information on the internet, it is getting difficult to find and organize relevant informations. To reduce heavy overload of accesses to information, automatic text classification for handling enormous documents is necessary. In this paper, we describe structure and implementation of a document classification system for web documents. We utilize SVM for documentation classification model that is constructed based on training set and its representative terms in a directory. In our system, SVM is trained and is used for document classification by using word set that is extracted from information and communication related web documents. In addition, we use vector-space model in order to represent characteristics based on TFiDF and training data consists of positive and negative classes that are represented by using characteristic set with weight. Experiments show the results of categorization and the correlation of vector length.

  • PDF