• 제목/요약/키워드: Doam dam

검색결과 21건 처리시간 0.022초

유역유출 변화에 따른 도암댐 저수지 수질 영향 예측 (Prediction of Water Quality Effect of Watershed Runoff Change in Doam Reservoir)

  • 노희진;김정민;김영도;강부식
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.975-985
    • /
    • 2013
  • 본 연구에서는 도암댐 유역을 대상으로 유역모형과 호소 및 하천모형의 연계를 통해 통합모델링시스템을 구축하였다. 국내 기후 특성상 하절기에 집중되는 강우로 인해 댐의 건설은 홍수조절, 용수확보 및 전력생산 등의 목적에 있어서 불가피하다. 특히 이러한 목적의 댐 형태가 하천과 하천 사이에 위치할 경우에는 연계된 구간을 하나의 유역으로 보고 이를 통합적으로 모의 및 관리 할 수 있는 시스템이 필요하다. 본 연구에서는 도암댐 유역을 대상으로 유역모형인 SWAT 모형을 구축하고 저수지 및 하천의 수리 및 수질 모의를 위해 EFDC-WASP 모형을 구축하였다. 또한 현재 도암댐 상부에서 시범가동 중인 수질개선장치 효율이 반영된 시나리오를 모의하여 통합모델링시스템의 적용성을 검토하였다.

고랭지 농업의 작물별 객토량 변화에 따른 토양유실 저감 분석 (Analysis of Soil Erosion Reduction Ratio with Changes in Soil Reconditioning Amount for Highland Agricultural Crops)

  • 허성구;전만식;박상헌;김기성;강성근;옥용식;임경재
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.185-194
    • /
    • 2008
  • There is increased soil erosion potential at highland agricultural crop fields because of its topographic characteristics and site-specific agricultural management practices performed at these areas. The agricultural upland fields are usually located at the sloping areas, resulting in higher soil loss, pesticides, and nutrients in case of torrential rainfall events or typhoon, such as 2002 Rusa and 2003 MaeMi. At the highland agricultural fields, the soil reconditioning have been performed every year to decrease damage by continuous cropping and pests. Also it has been done to increase crop productivity and soil fertility. The increased amounts of soil used for soil reconditioning are increasing over the years, causing significant impacts on water quality at the receiving water bodies. In this study, the field investigation was done to check soil reconditioning status for potato, carrot, and cabbage at the Doam-dam watershed. With these data obtained from the field investigation, the Soil and Water Assesment Tool (SWAT) model was used to simulate the soil loss reduction with environment-friendly and agronomically enough soil reconditioning. The average soil reconditioning depth for potato was 34.3 cm, 48.3 cm for carrot, and 31.2 cm for cabbage at the Doam-dam watershed. These data were used for SWAT model runs. Before the SWAT simulation, the SWAT ArcView GIS Patch, developed by the Kangwon National University, was applied because of proper simulation of soil erosion and sediment yield at the sloping watershed, such as the Doam-dam watershed. With this patch applied, the Coefficient of Determination ($R^2$) value was 0.85 and the Nash-Sutcliffe Model Efficiency (EI) was 0.75 for flow calibration. The $R^2$ value was 0.87 and the EI was 0.85 for flow validation. For sediment simulation, the $R^2$ value was 0.91 and the EI was 0.70, indicating the SWAT model predicts the soil erosion processes and sediment yield at the Doam-dam watershed. With the calibrated and validated SWAT for the Doam-dam watershed, the soil erosion reduction was investigated for potato, carrot, and cabbage. For potato, around 19.3 cm of soil were over applied to the agricultural field, causing 146% of more soil erosion rate, approximately 33.3 cm, causing 146% of more soil erosion for carrot, and approximately 16.2 cm, causing 44% of more soil erosion. The results obtained in this study showed that excessive soil reconditioning are performed at the highland agricultural fields, causing severe muddy water issues and water quality degradation at the Doam-water watershed. The results can be used to develop soil reconditioning standard policy for various crops at the highland agricultural fields, without causing problems agronomically and environmentally.

호내 부유물질 거동 분석을 통한 도암댐 운영 방안에 관한 연구 (Study on the Management of Doam Dam Operation by the Analysis of Suspended Solids Behavior in the lake)

  • 염보민;이혜원;문희일;윤동구;최정현
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.470-480
    • /
    • 2019
  • The Doam lake watershed was designated as a non-point pollution management area in 2007 to improve water quality based on watershed management implementation. There have been studies of non-point source reduction with respect to the watershed management impacting the pollutant transport of the reservoir. However, a little attention has been focused on the impact of water quality improvement by the management of the dam operation or the guidelines on the dam operation. In this study, the impact of in-lake management practices combined with watershed management is analyzed, and the appropriate guidelines on the operation of the dam are suggested. The integrated modeling system by coupling with the watershed model (HSPF) and reservoir water quality model (CE-QUAL-W2) was applied for analyzing the impact of water quality management practices. A scenario implemented with sedimentation basin and suspended matter barrier showed decrease in SS concentration up to 4.6%. The SS concentration increased in the scenarios adjusting withdrawal location from EL.673 m to the upper direction(EL.683 m and EL.688 m). The water quality was comparably high when the scenario implemented all in-lake practices with water intake at EL.673 m. However, there was improvement in water quality when the height of the water intake was moved to EL.688 m during the summer by preventing sediments inflow after the rainfall. Therefore, to manage water quality of the Doam lake, it is essential to control the water quality by modulating the height of water intake through consistent turbidity monitoring during rainfall.

강수조건에 따른 도암호 부유물질 거동 평가 (Estimation Suspended Solids Concentration of the Doam Reservoir under Dry and Wet Weather Conditions)

  • 최재완;신동석;임경재;이상수;강민지
    • 한국환경농학회지
    • /
    • 제31권2호
    • /
    • pp.113-121
    • /
    • 2012
  • BACKGROUND: The Doam watershed in Korea has been managed for the reduction and the prevention of non-point source pollution since 2007. Especially, the water quality of the Doam reservoir is a primary issue related to the Doam dam reoperation. We have carried out the modeling to evaluate the water quality based on suspended solids (SS) of the Doam watershed and the Doam reservoir. Two powerful hydrological and water quality models (HSPF and CE-QUAL-W2) were employed to simulate the combined processes of water quantity and quality both in the upland watershed of the Doam reservoir and the downstream waterbody. METHODS AND RESULTS: The HSPF model was calibrated and validated for streamflow and SS. The CE-QUAL-W2 was calibrated for water level, water temperature, and SS and was validated for the only water level owing to data lack. With the parameters obtained through the appropriate calibration, SS concentrations of inflow into and in the Doam reservoir were simulated for three years (2008, 2004 and 1998) of the minimum, the average, and the maximum of total annual precipitation during recent 30 years. The annual average SS concentrations of the inflow for 2008, 2004, and 1998 were 8.6, 10.9, and 18.4 mg/L, respectively and those in the Doam reservoir were 9.2, 13.8, and 21.5 mg/L. CONCLOUSION(s): The results showed that more intense and frequent precipitation would cause higher SS concentration and longer SS's retention in the reservoir. The HSPF and the CE-QUAL-W2 models could represent reasonably the SS from the Doam watershed and in the Doam reservoir.

한강 수계 주요 인공댐호의 식물플랑크톤 군집 동태 (Dynamics of Phytoplankton Communities of Major Dam Reservoirs in Han River System)

  • 윤석제;박혜경;신경애
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.317-325
    • /
    • 2010
  • This study was to investigate phytoplankton communities and to evaluate the effects of hydrological and physical-chemical environmental factors in major five dam reservoirs in the Han River water system. Annual average of chlorophyll a concentration in Lake Paldang, Lake Cheongpyeong and Lake Doam was higher than that of Lake Chungju and Lake Hoengseong. The opposite seasonal variation patterns of phytoplankton growth were observed in dam reservoirs; the highest biomass in spring of dry season in Lake Paldang, Lake Cheongpyeong which are the river-type reservoirs and Lake Doam where turbidity was high throughout the year, and in summer and autumn of rainy season in Lake Chungju and Lake Hoengseong which are the lake-type reservoirs, indicating that the seasonal pattern for growth of phytoplankton in on-river reservoirs is mainly determined by hydrologic characteristics. The dominant species of phytoplankton in Lake Paldang, Lake Cheongpyeong and Lake Doam, where the concentration of nutrients was relatively high, were Bacillariophyceae such as Stephanodiscus hantzschii, Aulacoseira granulata var. angustissima in Lake Paldang and Lake Cyeongpyeong and Nitzschia spp. in Lake Doam throughout all season. The dominant species of phytoplankton in Lake Chungju and Lake Hoengseong which showed the oligo-mesotrophic state, were Bacillariophyceae such as Stephanodiscus hantzschii, Cyclotella pseudostelligera in spring and winter, but Cyanophyceae such as Microcystis spp. in summer.

환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가 (Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data)

  • 허성구;김남원;유동선;김기성;임경재
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

FRAGSTATS 모형을 이용한 도암댐 유역의 산림 파편화 분석 (Landscape Analysis of the Forest Fragmentations at Doam-Dam Watershed using the FRAGSTATS Model)

  • 허성구;김기성;안재훈;윤정숙;임경재;최중대;신용철;유창원
    • 한국지리정보학회지
    • /
    • 제10권1호
    • /
    • pp.10-21
    • /
    • 2007
  • 강원도 평창군에 위치한 도암댐 유역은 인간의 개발행위에 따른 산림지역 파편화로 인해 산림지역의 상당부분이 농업/도시 지역으로 변화되어 왔다. 이러한 토지이용변화로 인해 하류 수역에서는 많은 부정적인 영향이 발생하고 있다. 그러나 토지이용변화가 도암댐 유역내 경관에 미치는 영향을 과학적인 분석 툴을 이용하여 수계단위로 분석한 예는 그리 많지 않다. 따라서 본 연구에서는 산림의 파편화가 경관에 미치는 영향을 정량적으로 분석하기 위하여 경관분석 프로그램인 FRAGSTATS를 이용하였다. 복잡한 계산식으로 구성된 경관지수를 자동으로 산출해주는 FRAGSTATS 프로그램은 경관분석에 많이 이용해 왔으나, 각 경관지수별 설명이 충분하지 않아 FRAGSTATS를 처음 사용하는 사용자가 이를 이용하여 정량적 경관분석을 수행하기에는 다소 어려움이 있어 왔다. 따라서 본 연구에서는 경관 파편화가 발생하기 전과 후의 가상적이면서 단순화된 경관을 구성하여 경관지수를 설명하였다. 본 연구에서 기술된 경관지수를 이용하여 도암댐 유역내에서 산림 파편화가 경관에 미치는 영향을 정량적으로 평가하였다. 총 19개 소유역중 S1 유역이 1985년부터 2000년까지 가장 많은 산림 파편화가 진행된 것으로 분석되었다. 본 연구의 결과는 산림지역의 파편화, 이에 따른 토지이용변화가 수질에 미치는 영향을 수계단위로 평가하는데 매우 유용하게 사용될 수 있으리라 판단되며, FRAGSTATS과 같은 경관분석 프로그램의 결과를 바탕으로 한 환경친화적 토지이용계획 을 수립하는데 매우 유용하리라 판단된다.

  • PDF

SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석 (Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System)

  • 유동선;안재훈;윤정숙;허성구;박윤식;김종건;임경재;김기성
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

천연 제올라이트 활용을 통한 댐 및 호소의 오염수 처리 (Polluted Water Treatment of Dam and Reservoir using Natural Korean Zeolite)

  • 박기호;서진국
    • 한국산업융합학회 논문집
    • /
    • 제8권2호
    • /
    • pp.113-120
    • /
    • 2005
  • Due to the Typhoon MAEMI on Sep. of 12 in 2003, the turbidity value of DOAM Dam was recorded more than 300NTU until now. The natural zeolite located in the east coast of Korean peninsula was applied to reduce turbidity with cation exchange process. The result of this technique, the value of turbidity was reduced less than 1NTU. Also the value of pH showed stable state compare to before and after.

  • PDF

대기안정도(大氣安定度)와 지형조건(地形條件)에 따른 풍향변동폭(風向變動幅)의 특성(特性) (Influence of Atmospheric Stability and Topography on the Wind Direction Fluctuations)

  • 김용국;이종범
    • 한국대기환경학회지
    • /
    • 제8권2호
    • /
    • pp.138-145
    • /
    • 1992
  • Dependence of the standard deviation of wind direction fluctuations, ${\sigma}_{\theta}$, on atmospheric stability, averaging time and topography were analysed with the data measured at three sites, Youngjongdo beach of the Yellow Sea, Chuncheon basin and Doam-Dam valley. The results show that the mean value of ${\sigma}_{\theta}$ is large in complex terrain, the Doam-Dam site. It is notable that the large value of ${\sigma}_{\theta}$ at night is associated with the low wind speed and the strong stable condition. In order to study the long-period fluctuations of the wind direction, ${\sigma}_{\theta}$ for longer than 10 minutes averaging time was further analysed using the data obtained at the Chuncheon basin. At the averaging time shorter than 60 minutes, larger ${\sigma}_{\theta}$ is associated with longer averaging time in the strong stable condition. However, ${\sigma}_{\theta}$ was not affected significantly by wind speed and averaging time in neutral conditions. The results of the spectrum analysis for the time series data of wind direction showed that low-frequency fluctuations ranging from 10 to 60 minutes were dominated at the Chuncheon basin in strong stable condition.

  • PDF