• Title/Summary/Keyword: Disturbance Torque Observer

Search Result 140, Processing Time 0.02 seconds

Synchronous Control of a Two-Axes Driving System by Disturbance Observer and PID Controller (외란 관측기와 PID제어기를 이용한 2축 주행시스템의 동기제어)

  • 변정환;김영복;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers, disturbance observers, and one synchronous controller. The speed controllers, based on the PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order for the speed response fo the second axis to correspond with the one of the first axis. The disturbance observer has been designed to restrain the torque disturbance. The synchronous controller eliminates the synchronous error by controlling the speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

Disturbance Observer-based Current Measurement Offset Error Compensation in Vector-controlled SPMSM Drives (표면 부착형 동기 전동기 벡터 제어에서의 외란 관측기 기반 전류 측정 오프셋 오차 보상 방법)

  • Lee, Sang-Min;Lee, Kibok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.402-409
    • /
    • 2022
  • In vector-controlled drive systems, the current measurement offset error causes unwanted torque ripple, resulting in speed and torque control performance degradation. The current measurement offset error is caused by various factors, including thermal drift. This study proposes a simple DC offset error compensation method for a surface permanent magnet motor based on a disturbance observer. The disturbance observer is designed in the stationary reference frame. The proposed method uses only the measured current and machine parameters without additional hardware. The effect of parameter variations is analyzed, and the performance of the current measurement offset error compensation method is validated using simulation and experimental results.

Robust Adaptive Precision Position Control of PMSM

  • Ko Jong-Sun;Ko Sung-Hwan;Kim Yung-Chan
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.347-355
    • /
    • 2006
  • A new control method for precision robust position control of a permanent magnet synchronous motor (PMSM) is presented. In direct drive motor systems, a load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in using a fixed gain to solve this problem. However, the motor flux linkage cannot be determined precisely for a load torque observer. Therefore, an asymptotically stable adaptive observer base on a deadbeat observer is considered to overcome the problems of unknown parameters, torque disturbance and a small chattering effect. To find the critical parameters the system stability analysis is carried out using the Liapunov stability theorem.

An Improved Torque Feed-forward Control with Observer-based Inertia Identification in PMSM Drives

  • Zhao, Shouhua;Chen, Yangcheng;Cui, Lin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.69-76
    • /
    • 2013
  • This paper is concerned with speed tracking control problem for permanent-magnet synchronous drives (PMSM) in the presence of an variable load torque and unknown model parameters. The disturbance of speed control caused by inaccuracy of model parameters has been investigated. A load torque observer has been proposed to observe the load torque and estimate the disturbance caused by inaccuracy of model parameters. Both inertia and friction coefficient are identified in gradient descent approach. The stability condition of the observer has also been studied. Furthermore an improved feed-forward control has been introduced to reduce the speed track error. The proposed control strategy has been verified by both simulation and experimental results.

Robust Speed Control of Vector Controlled PMSM with Load Torque Observer (부하토오크 관측기를 이용한 영구자석 동기전동기의 강인성 속도 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Won-Oh;Yoon, Myung-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.559-563
    • /
    • 1991
  • Permanent magnet synchronous motor (PMSM) is receiving increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. Vector-controlled PMSM has the same operating characteristics as separately excited dc motor. The drive system of servo motor is requested to have an accurate response for the speed reference and a quick recovery for the disturbance such as load torque. However the dynamics of PMSM drive change greately by parameter variations. Morever, when the unkown and inaccessible disturbances are imposed on PMSM, the drive system is given a significant effect by them. As a result, the drive system with both a fast drive performance and a reduced sensitivity to parameter variations is requested. In this paper, the robust control system of PMSM with torque feedforward using load torque observer is presented. In the proposed system, load torque is estimated by the reduced order observer, and the robust control system against load torque variation is realized using the torque feedforward. Moreover, the design of speed controller with the torque observer is discussed. Simulation results show that the proposed method is effective for suppression of parameter variations and load disturbance.

  • PDF

Suppression of the Thrust Loss for the Maximum Thrust Operation in the Electric Propulsion Ship (전기추진선의 최대추력 운항을 위한 추력손실 억제에 관한 연구)

  • Kim, So-Yeon;Youn, Young-Doo;Sul, Seung-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.238-247
    • /
    • 2007
  • This paper presents the thrust loss suppression algorithm in the electric propulsion ship. The thrust loss due to cavitation can be regarded as the disturbance torque. The disturbance torque is estimated by means of the disturbance observer. Considering the estimated disturbance torque, the speed reference of the propeller is modified to suppress the thrust loss. The experimental results which performed in the cavitation tunnel with electric machine operating system and its controller will be shown to verify the proposed algorithm.

A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation (전향보상을 이용한 BLDC 전동기의 속도제어에 관한 연구)

  • 박기홍;김태성;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2004
  • This paper presents a speed controller method based on the disturbance torque observer for high-performance speed control of the brushless DC (RLDC) motor. In case of the speed control of robot arms and tracking applications with lower stiffness, we cannot design the speed controller gain to be very large from the viewpoint of the system stability Thus, the feedforward compensation method using disturbance torque observer was proposed. This method can improve the speed characteristic without increasing the speed controller gain. The speed characteristic against disturbance torque can be improved when the bandwidth of the speed controller cannot be made large enough. Consequently, the speed control of the BLDC motor for the high-performance application become achieved.

A Study of Adaptive Load Torque Observer and Robust Precision Position Control of BLDD Motor (직접 구동용 BLDC 전동기의 정밀 Robust 위치제어 및 적응형 외란 관측기 연구)

  • 고종선;윤성구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.138-143
    • /
    • 1999
  • A new control method for the precision robust position control of a brushless DC(BLDC) motor for direct drive m motor(BLDDM) system using the asymptotically stable adaptive load torque observer is presented. A precision position c control is obtained for the BLDD motor system appro성mately linearized using the fieldlongrightarroworientation method. Many of t these motor systems have BLDD motor to obtain no backlashes. On the other hand, it has disadvantages such as the h high cost and more complex controller caused by the nonlinear characteristics. And the load torque disturbance is d directly affected to a motor shaft. To r밍ect this problem, stability analysis is calTied out using Lyapunov stability t theorem. Using this results, the stability is proved and load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent CUlTent having the fast response.

  • PDF

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko J.S.;Lee T.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.393-397
    • /
    • 2003
  • This paper presents neural load torque observer tha used to deadbeat load torque observer and regulation of the compensation gun by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator li combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper

  • PDF

Precision Position Control of PMSM using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • Ko Jong-Sun;Kang Young-Jin;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.49-52
    • /
    • 2002
  • This paper presents neural load torque observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF