• Title/Summary/Keyword: Distribution statistical model

Search Result 1,248, Processing Time 0.023 seconds

BAYESIAN HIERARCHICAL MODEL WITH SKEWED ELLIPTICAL DISTRIBUTION

  • Chung, Youn-Shik;Dipak K. Dey;Yang, Tae-Young;Jang, Jung-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.425-448
    • /
    • 2003
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution proposed originally by Chen et al. (1999) and Branco and Dey (2001). These rich classes of models combine the information of independent studies, allowing investigation of variability both between and within studies, and incorporate weight function. Here, the testing for the skewness parameter is discussed. The score test statistic for such a test can be shown to be expressed as the posterior expectations. Also, we consider the detail computational scheme under skewed normal and skewed Student-t distribution using MCMC method. Finally, we introduce one example from Johnson (1993)'s real data and apply our proposed methodology. We investigate sensitivity of our results under different skewed errors and under different prior distributions.

Closeness of Lindley distribution to Weibull and gamma distributions

  • Raqab, Mohammad Z.;Al-Jarallah, Reem A.;Al-Mutairi, Dhaifallah K.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.129-142
    • /
    • 2017
  • In this paper we consider the problem of the model selection/discrimination among three different positively skewed lifetime distributions. Lindley, Weibull, and gamma distributions have been used to effectively analyze positively skewed lifetime data. This paper assesses how much closer the Lindley distribution gets to Weibull and gamma distributions. We consider three techniques that involve the likelihood ratio test, asymptotic likelihood ratio test, and minimum Kolmogorov distance as optimality criteria to diagnose the appropriate fitting model among the three distributions for a given data set. Monte Carlo simulation study is performed for computing the probability of correct selection based on the considered optimality criteria among these families of distributions for various choices of sample sizes and shape parameters. It is observed that overall, the Lindley distribution is closer to Weibull distribution in the sense of likelihood ratio and Kolmogorov criteria. A real data set is presented and analyzed for illustrative purposes.

Modified information criterion for testing changes in generalized lambda distribution model based on confidence distribution

  • Ratnasingam, Suthakaran;Buzaianu, Elena;Ning, Wei
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.301-317
    • /
    • 2022
  • In this paper, we propose a change point detection procedure based on the modified information criterion in a generalized lambda distribution (GLD) model. Simulations are conducted to obtain empirical critical values of the proposed test statistic. We have also conducted simulations to evaluate the performance of the proposed methods comparing to the log-likelihood method in terms of power, coverage probability, and confidence sets. Our results indicate that, under various conditions, the proposed method modified information criterion (MIC) approach shows good finite sample properties. Furthermore, we propose a new goodness-of-fit testing procedure based on the energy distance to evaluate the asymptotic null distribution of our test statistic. Two real data applications are provided to illustrate the use of the proposed method.

A NOVEL WEIBULL MARSHALL-OLKIN POWER LOMAX DISTRIBUTION: PROPERTIES AND APPLICATIONS TO MEDICINE AND ENGINEERING

  • ELHAM MORADI;ZAHRA SHOKOOH GHAZANI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1275-1301
    • /
    • 2023
  • This paper introduced the Weibull Marshall-Olkin Power Lomax (WMOPL) distribution. The statistical aspects of the proposed model are presented, such as the quantiles function, moments, mean residual life and mean deviations, variance, skewness, kurtosis, and reliability measures like the residual life function, and stress-strength reliability. The parameters of the new model are estimated using six different methods, and simulation research is illustrated to compare the six estimation methods. In the end, two real data sets show that the Weibull Marshall-Olkin Power Lomax distribution is flexible and suitable for modeling data.

Cyber risk measurement via loss distribution approach and GARCH model

  • Sanghee Kim;Seongjoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.75-94
    • /
    • 2023
  • The growing trend of cyber risk has put forward the importance of cyber risk management. Cyber risk is defined as an accidental or intentional risk related to information and technology assets. Although cyber risk is a subset of operational risk, it is reported to be handled differently from operational risk due to its different features of the loss distribution. In this study, we aim to detect the characteristics of cyber loss and find a suitable model by measuring value at risk (VaR). We use the loss distribution approach (LDA) and the time series model to describe cyber losses of financial and non-financial business sectors, provided in SAS® OpRisk Global Data. Peaks over threshold (POT) method is also incorporated to improve the risk measurement. For the financial sector, the LDA and GARCH model with POT perform better than those without POT, respectively. The same result is obtained for the non-financial sector, although the differences are not significant. We also build a two-dimensional model reflecting the dependence structure between financial and non-financial sectors through a bivariate copula and check the model adequacy through VaR.

Testing Homogeneity of Errors in Unbalanced Random Effects Linear Model

  • Ahn, Chul H.
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.603-613
    • /
    • 2001
  • A test based on score statistic is derived for detecting homoscedasticity of errors in unbalanced random effects linear model. A small simulation study is performed to investigate the finite sample behaviour of the test statistic which is known to have an asymptotic chi-square distribution under the null hypothesis.

  • PDF

Nonparametric Estimation in Regression Model

  • Han, Sang Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.15-27
    • /
    • 2001
  • One proposal is made for constructing nonparametric estimator of slope parameters in a regression model under symmetric error distributions. This estimator is based on the use of idea of Johns for estimating the center of the symmetric distribution together with the idea of regression quantiles and regression trimmed mean. This nonparametric estimator and some other L-estimators are studied by Monte Carlo.

  • PDF

A Study on Change-Points in System Reliability

  • Kwang Mo Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.10-19
    • /
    • 1994
  • We study the change-point problem in the context of system reliability models. The maximum likelihood estimators are obtained based on the Jelinski and Moranda model. To find the approximate distribution of the change-point estimator, we suggest of parametric bootstrap method in which the estimators are substituted in the assumed model. Through an example we illustrate the proposed method.

  • PDF

A study on the Bayesian nonparametric model for predicting group health claims

  • Muna Mauliza;Jimin Hong
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.323-336
    • /
    • 2024
  • The accurate forecasting of insurance claims is a critical component for insurers' risk management decisions. Hierarchical Bayesian parametric (BP) models can be used for health insurance claims forecasting, but they are unsatisfactory to describe the claims distribution. Therefore, Bayesian nonparametric (BNP) models can be a more suitable alternative to deal with the complex characteristics of the health insurance claims distribution, including heavy tails, skewness, and multimodality. In this study, we apply both a BP model and a BNP model to predict group health claims using simulated and real-world data for a private life insurer in Indonesia. The findings show that the BNP model outperforms the BP model in terms of claims prediction accuracy. Furthermore, our analysis highlights the flexibility and robustness of BNP models in handling diverse data structures in health insurance claims.

Behrens-Fisher Problem from a Model Selection Point of View

  • Jeon, Jong-Woo;Lee, Kee-Won
    • Journal of the Korean Statistical Society
    • /
    • v.20 no.2
    • /
    • pp.99-107
    • /
    • 1991
  • Behrens-Fisher problem is viewed from a model selection approach. Normal distribution is regarded as an approximating model, A criterion, called TIC, is derived and is compared with selection criteria such as AIC and a bootstrap estimator. Stochastic approximation is used since no closed form expression is available for the bootstrap estimator.

  • PDF