• Title/Summary/Keyword: Distribution of wave height

Search Result 184, Processing Time 0.03 seconds

Correction Factor for Assessment of Nearshore Wave Energy (근해 파력에너지 산정을 위한 보정 기법에 관한 연구)

  • Kim, Gunwoo;Jeong, Weon Mu;Jun, Kicheon;Lee, Myung Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.164.1-164.1
    • /
    • 2011
  • Previously, many researchers assessed nearshore wave energy in two ways. The first is a simulation with respect to the offshore wave time series to validate the wave buoy data and the wave model results, and the other is to simulate the representative waves of typical seasonal wave conditions. The former requires enormous computational time and effort. The latter yields inspection on the patterns for the spatial and temporal distribution of nearshore wave energy but tends to underestimates the amount of wave energy in the nearshore region owing to the correlation between the significant wave height and wave period. $\ddot{O}$zger et al. (2004) derived the stochastic wave energy formulation by introducing a correction factor explicitly in terms of the covariance of the wave energy and significant wave height. In this study, a correction factor was applied for the assessment of nearshore wave energy obtained by numerical simulation of wave transformation with respect to representative waves.

  • PDF

Characteristics of Incident Waves on Seaweed Farm Field Around Gumil-up Sea, Wando (완도 금일읍 주변해역 해조류 양식장에 내습하는 해양파랑 특성)

  • Jeon, Yong-Ho;Yoon, Han-Sam;Kim, Dong-Hwan;Kim, Heon-Tae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.177-185
    • /
    • 2012
  • Wave field measurements were made over a period of 18 days to study the spatial distribution of incident wave on seaweed tarm field around Gumil-up Sea, Wando, Korea. These measured data were compared with data from the Geomun-do ocean weather/wave observation buoy. A numerical simulation model that combined the offshore design wave with the seasonal normal incoming wave was used to study the incident wave distribution surrounding a seaweed farm. The results are summarized as follows. (1) On-site wave measurements showed that the major relationship between maximum and significant wave height was $H_{max}=1.6H_{1/3}$. (2) Offshore incident wave energy reaching the coast was greatly influenced by the wind direction. A north wind reduced the incident wave energy and a south wind increased it. (3) The calculated maximum wave height under the design wave boundany conditions was in the range of 4~5 m and the reduction in the incident wave height ratio ranged from approximately 38.1% to 47.6% at Gumil-up Sea. Under normal wave conditions, the maximum wave heights were 3.6~4.0 m in summer and 2.3~2.7 m in winter while the reduction in the incident wave height ratio was about 41.8% to 49.1%. (4) The sea state in the southern area of Gumil-up was the most affected by ocean waves, whereas the sea state in the northern area was very stable. The significant wave ratio in the south was about six times that in the north.

Analysis of Wave Distribution at Nakdong River Estuary Depending on the Incident Wave Directions Based on SWAN Model Simulation (SWAN 모델을 이용한 낙동강 하구역의 입사파향별 파랑분포 특성)

  • Park, Soon;Yoon, Han-Sam;Park, Hyo-Bong;Ryu, Seung-Woo;Ryu, Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.188-196
    • /
    • 2009
  • This study conducted numerical simulations to analyze the wave characteristics(distribution) depending on the directional changes of waves in the Nakdong river estuary by using SWAN(Simulating WAves Nearshore) model. The results from the tests are summarized as below. The wave height rates are generally highly distributed with the incident waves from the S, SSE, SSW, SE, SW in sequence. When the waves from the S, SSW, SSE directions are predominant, the bigger waves were observed in front of sandbars. According to the results of the wave steepness against the wave direction, at the east coast of Gadeok island(northwest of Nakdong estuary), where has mild seabed slopes, the wave height rates distribute in the range of 0.4~0.6; the wave height rates over the west coastal region of Dadeapo(southeast of Nakdong estuary) are 0.5~0.6. The wave height rate tends to be rapidly decreased over the east region of Nakdong river estuary rather than its west region.

  • PDF

Distribution of Irregular Wave Height in Finite Water Depth (유한수심에서의 불규칙파의 파고 분포)

  • 안경모;마이클오찌
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.88-93
    • /
    • 1994
  • This study is concerned with an analytic derivation of the probability density function applicable for wave heights in finite water depth using two different methods. As the first method of the study, a probability density function is developed by applying a series of polynomials which is orthogonal with respect to Rayleigh probability density function. The newly derived probability density function is compared with the histogram constructed from wave data obtained in finite water depth which indicate strong non-Gaussian characteristics. Although the probability density represents the histogram very well. it has negative density at large values. Although the magnitude of the negative density is small. it negates the use of the distribution function fer estimating extreme values. As the second method of the study, a probability density function of wave height is developed by applying the maximum entropy method. The probability density function thusly derived agrees very well with the wave height distribution in shallow water, and appears to be useful in estimating extreme values and statistical properties of wave heights in finite water depth. However, a functional relationship between the probability distribution and the non-Gaussian characteristics of the data cannot be obtained by applying the maximum entropy method.

  • PDF

Prediction of Extreme Design Wave Height (극한 설계 파고의 추정)

  • Chon, Y.K.;Ha, T.B.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.145-152
    • /
    • 1996
  • In this study, the technique to evaluate the extreme design wave height of certain return period is developed from the given measured or hindcasted sea state data of concerned area for limited period. By using the order statistics and Monte Carlo Simulation method, the best fit probability distribution function with proper parameters describing the given wave height data is chosen, from which extreme design wave height can be predicted by extrapolation to the desired return period. The fitness and the confidence limit of the chosen probability function are also discussed. Application calculation is carried out for the wave height data given by applying the Wilson wave model theory to major 50 typhoon wind data affecting Korean South coast during the year from 1938 to 1987.

  • PDF

A Study of the Appearance Characteristics and Generation Mechanism of Giant Waves (대양에서의 거대파랑 출현 특성과 발생 기구에 관한 연구)

  • Shin Seung-Ho;Hong Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.181-187
    • /
    • 2006
  • In the wave spectrum distribution based on linear wave theory, the appearance of a giant wave whose wave height reaches to 30m has been considered next to almost impossible in a real sea However since more than 10 giant waves were observed in a recent investigation of global wave distribution which was carried out by the analysis of SAR imagines for three weeks, the existence of the giant waves is being recognized and it is considered the cause of many unknown marine disasters. The change of wave height distribution concerning a formation of wave train, nonlinear wave to wave interaction and so on were raised as the causes of the appearance of the giant waves, but the occurrence mechanism of the giant waves hasn't been cleared yet. In present study, we investigated appearance circumstances of the giant waves in real sea and its occurrence mechanism was analyzed based on linear and nonlinear wave focusing theories. Also, through a development of numerical model of the nonlinear $schr\"{o}dinger$ equation, the formations of the giant wave from progressive wave train were reproduced.

A Study on Operation Rate and Output of Wave Power Generator by Waves Condition (파랑 조건에 따른 파력발전장치의 가동률과 발전량 산정에 대한 연구)

  • Ryu, Hwang-Jin;Hong, Key-Yong;Shin, Seung-Ho;Kim, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.615-619
    • /
    • 2009
  • This paper is investigated to variation of wave power generation operation rate, operating capacity and output with the wave conditions represented by wave height-period window. By the use of the long-term wave data from 1979 to 2002 which is provided by Korea Ocean Research & Development Institute(KORDI), we calculated the monthly variation of significant wave height(Hs), zero-up crossing period(Tz) and distribution of wave appearance rate. And using the same wave data, it was charted the Hs-Tz and wave-energy scatter diagrams.

  • PDF

Peak Distribution of Nonlinear Random Waves of Finite Bandwidth (유한한 Spectral Bandwidth를 갖는 Nonlinear Random Waves의 추계학적 성질)

  • Cho, Yong-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.58-65
    • /
    • 1993
  • The theoretical treatment of statistical properties and distribution relevant to nonlinear random wave field of moderate bandwidth such as peak and trough of wave elevation is an overdue task hampered by the complicated form of nonlinear random waves. In this study, the extreme distribution of nonlinear random waves is derived based on the simplified version of Longuet-Higgins' wave model. It is shown that the band width of wave spectrum has a significant influence on these extreme distribution and the significant wave height is getting larger in an increasing manner as the nonlinearity is getting profound.

  • PDF

Analysis of Failure Probability of Armor Units and Uncertainties of Design Wave Heights due to Uncertainties of Parameters in Extreme Wave Height Distributions (극치파고분포의 모수 불확실성에 따른 설계파고의 불확실성 및 피복재의 파괴확률 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can take uncertainties of scale and location parameters of Gumbel distribution into account straightforwardly in evaluating significant design wave heights with respect to return periods. The uncertainties of design wave heights may directly depend on the amounts of uncertainties of scale parameter and those distributions may be followed by Gumbel distribution. In case of that the expected values of maximum significant wave height during lifetime of structures are considered to be the design wave heights, more uncertainties are happened than in those evaluated according to return periods with encounter probability concepts. In addition, reliability analyses on the armor units are carried out to investigate into the effects of the uncertainties of design wave heights on the probability of failure. The failure probabilities of armor units to 5% damage level for 50 return periods are evaluated and compared according to the methods of taking uncertainties of design wave heights into account. It is found that the probabilities of failure may be distributed into wide ranges of bounds when the uncertainties of design wave heights are assumed to be same as those of annual maximum significant wave heights.

Characteristics of Waves Continuously Observed over Six Years at Offshore Central East Coast of Korea (우리나라 동해안 중부 해역에서 6년간 연속 관측된 파랑의 특성)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Cho, Hong-Yeon;Baek, Won-Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.88-99
    • /
    • 2019
  • This study presents the results of analysis for the wave data that were consecutively collected from February 2013 to November 2018 at the location of 1.6 km offshore from Namhangjin beach. The water depth at the location is 30.5 m and waves were measured by AWAC (Acoustic Wave And Current meter). By using wave-by-wave analysis and spectral analysis, wave heights and periods were evaluated and then the relationships between the quantities obtained by the two methods were proposed based on linear regression analysis. In addition, monthly and yearly variations of the significant wave height and period, and the peak wave direction were analyzed. Moreover, the relationship between the significant wave height and period was newly suggested. Variability and probability distribution of the significant wave period with respect to the significant wave height were also examined.