• Title/Summary/Keyword: Distribution Information

Search Result 11,984, Processing Time 0.045 seconds

Analyzing the discriminative characteristic of cover letters using text mining focused on Air Force applicants (텍스트 마이닝을 이용한 공군 부사관 지원자 자기소개서의 차별적 특성 분석)

  • Kwon, Hyeok;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.75-94
    • /
    • 2021
  • The low birth rate and shortened military service period are causing concerns about selecting excellent military officers. The Republic of Korea entered a low birth rate society in 1984 and an aged society in 2018 respectively, and is expected to be in a super-aged society in 2025. In addition, the troop-oriented military is changed as a state-of-the-art weapons-oriented military, and the reduction of the military service period was implemented in 2018 to ease the burden of military service for young people and play a role in the society early. Some observe that the application rate for military officers is falling due to a decrease of manpower resources and a preference for shortened mandatory military service over military officers. This requires further consideration of the policy of securing excellent military officers. Most of the related studies have used social scientists' methodologies, but this study applies the methodology of text mining suitable for large-scale documents analysis. This study extracts words of discriminative characteristics from the Republic of Korea Air Force Non-Commissioned Officer Applicant cover letters and analyzes the polarity of pass and fail. It consists of three steps in total. First, the application is divided into general and technical fields, and the words characterized in the cover letter are ordered according to the difference in the frequency ratio of each field. The greater the difference in the proportion of each application field, the field character is defined as 'more discriminative'. Based on this, we extract the top 50 words representing discriminative characteristics in general fields and the top 50 words representing discriminative characteristics in technology fields. Second, the number of appropriate topics in the overall cover letter is calculated through the LDA. It uses perplexity score and coherence score. Based on the appropriate number of topics, we then use LDA to generate topic and probability, and estimate which topic words of discriminative characteristic belong to. Subsequently, the keyword indicators of questions used to set the labeling candidate index, and the most appropriate index indicator is set as the label for the topic when considering the topic-specific word distribution. Third, using L-LDA, which sets the cover letter and label as pass and fail, we generate topics and probabilities for each field of pass and fail labels. Furthermore, we extract only words of discriminative characteristics that give labeled topics among generated topics and probabilities by pass and fail labels. Next, we extract the difference between the probability on the pass label and the probability on the fail label by word of the labeled discriminative characteristic. A positive figure can be seen as having the polarity of pass, and a negative figure can be seen as having the polarity of fail. This study is the first research to reflect the characteristics of cover letters of Republic of Korea Air Force non-commissioned officer applicants, not in the private sector. Moreover, these methodologies can apply text mining techniques for multiple documents, rather survey or interview methods, to reduce analysis time and increase reliability for the entire population. For this reason, the methodology proposed in the study is also applicable to other forms of multiple documents in the field of military personnel. This study shows that L-LDA is more suitable than LDA to extract discriminative characteristics of Republic of Korea Air Force Noncommissioned cover letters. Furthermore, this study proposes a methodology that uses a combination of LDA and L-LDA. Therefore, through the analysis of the results of the acquisition of non-commissioned Republic of Korea Air Force officers, we would like to provide information available for acquisition and promotional policies and propose a methodology available for research in the field of military manpower acquisition.

Spectral Analysis of Resting EEG in Brain Compartments (휴지기 뇌파의 구역별 주파수 분석)

  • Lee, Migyung
    • Sleep Medicine and Psychophysiology
    • /
    • v.27 no.2
    • /
    • pp.67-76
    • /
    • 2020
  • Objectives: Brain maturation involves brain lateralization and asymmetry to achieve efficient information processing and cognitive controls. This study elucidates normal brain maturation change during the gap between ages 6-9 and age 14-17 using resting EEG. Methods: An EEG dataset was acquired from open source MIPDB (Multimodal Resource for Studying Information Processing in the Developing Brain). Ages 6-9 (n = 24) and ages 14-17 (n = 26) were selected for analysis, and subjects with psychiatric illness or EEG with severe noise were excluded. Finally, ages 6-9 (n = 14) and ages 14-17 (n = 11) were subjected to EEG analysis using EEGlab. A 120-sec length of resting EEG when eyes were closed was secured for analysis. Brain topography was compartmentalized into nine regions, best fitted with brain anatomical structure. Results: Absolute power of the delta band and theta band in ages 6-9 was greater than that of ages 14-17 in the whole brain, and, also is relative power of delta band in frontal compartment, which is same line with previous studies. The relative power of the beta band of ages 14-17 was greater than that of ages 6-9 in the whole brain. In asymmetry evaluation, relative power of the theta band in ages 14-17 showed greater power in the left than right frontal compartment; the opposite finding was noted in the parietal compartment. For the alpha band, a strong relative power distribution in the left parietal compartment was observed in ages 14-17. Absolute and relative power of the alpha band is distributed with hemispheric left lateralization in ages 14-17. Conclusion: During the gap period between ages 6-9 and ages 14-17, brain work becomes more complicated and sophisticated, and alpha band and beta band plays important roles in brain maturation in typically developing children.

A Study on the Introduction of Performance Certification System of Inspection and Diagnostic Equipment for Infrastructure (시설물 진단장비의 성능인증제 도입에 관한 연구)

  • Hong, Sung-Ho;Kim, Jung-Gon;Cho, Jae-Young;Kim, Do-Hyoung;Kim, Jung-Yeol;Kim, Young-Min
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.104-115
    • /
    • 2022
  • Purpose: Infrastructure inspection and its diagnostics technique have been rapidly developing recently. Therefore, it is important to secure the reliability of diagnostic equipment, and this paper deals with inspection of diagnostic equipment, introduction to a certification system and development plans for infrastructure. Method: Several certification systems are established and introduction plans are reviewed through experts by synthesizing the contents of certification research for existing infrastructure diagnosis equipment. In addition, the revision of the law for introduction of the system is reviewed, detailed operation regulations are prepared and phased development plans are reviewed, which are based on the operation scenario. Result: Inspection and certification plans were constructed through four routes in order to consider infrastructure inspection and diagnostic equipment in use, and new diagnostic equipment using state-of-the-art technology. Furthermore, market confusion depending on the introduction of a new certification system is minimized and reliability is secured by transforming a simple inspection system in the short term into a formal certification system in the long term. The law amendments according to the introduction of the system were reviewed and detailed operation regulations were developed. Also, phased development plans, which are based on the long-term development scenario including manpower, infrastructure and specifications, were presented. Conclusion: It is important to secure reliability through the distribution and certification of diagnostic equipment using 4th industrial technology to strengthen the safety management of infrastructure at the national level since the infrastructure is various in type and increasingly large in size. It is also essential to train human resources who can use new technology with inspection and diagnosis system in order to enhance the safety management of all infrastructures. Moreover, it is necessary to introduce a regular inspection system for infrastructure that combines loT technology in the long-term point of view and to promote the introduction by giving active incentives to institutions that actively accept it.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.

Development of a method to create a matrix of heavy rain damage rating standards using rainfall and heavy rain damage data (강우량 및 호우피해 자료를 이용한 호우피해 등급기준 Matrix작성 기법 개발)

  • Jeung, Se Jin;Yoo, Jae Eun;Hur, Dasom;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Currently, as the frequency of extreme weather events increases, the scale of damage increases when extreme weather events occur. This has been providing forecast information by investing a lot of time and resources to predict rainfall from the past. However, this information is difficult for non-experts to understand, and it does not include information on how much damage occurs when extreme weather events occur. Therefore, in this study, a risk matrix based on heavy rain damage rating was presented by using the impact forecasting standard through the creation of a risk matrix presented for the first time in the UK. First, through correlation analysis between rainfall data and damage data, variables necessary for risk matrix creation are selected, and PERCENTILE (25%, 75%, 90%, 95%) and JNBC (Jenks Natural Breaks Classification) techniques suggested in previous studies are used. Therefore, a rating standard according to rainfall and damage was calculated, and two rating standards were synthesized to present one standard. As a result of the analysis, in the case of the number of households affected by the disaster, PERCENTILE showed the highest distribution than JNBC in the Yeongsan River and Seomjin River basins where the most damage occurred, and similar results were shown in the Chungcheong-do area. Looking at the results of rainfall grading, JNBC's grade was higher than PERCENTILE's, and the highest grade was shown especially in Jeolla-do and Chungcheong-do. In addition, when comparing with the current status of heavy rain warnings in the affected area, it can be confirmed that JNBC is similar. In the risk matrix results, it was confirmed that JNBC replicated better than PERCENTILE in Sejong, Daejeon, Chungnam, Chungbuk, Gwangju, Jeonnam, and Jeonbuk regions, which suffered the most damage.

A Study on Method of Citizen Science and Improvement of Performance as a Ecosystem Conservation and Management Tool of Wetland Protected Areas (Inland Wetland) - Focused on the Target of Conservation·Management·Utilization in Wetland Protected Area Conservation Plan - (내륙 습지보호지역의 생태계 보전·관리 도구로서 시민과학연구 방법론 및 성과 제고 방안 - 습지보호지역 보전계획의 보전·관리·이용 목표를 중심으로 -)

  • Inae Yeo;Changsu Lee;Ji Hyun Kang
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.450-462
    • /
    • 2023
  • This study suggested methodology of Citizen Science as a tool of ecosystem conservation and management to achieve Wetland Protected Area (WPA) Conservation Plan and examined whose applicability in 3 WPAs (Jangrok of Gwangju metropolitan city, Madongho of Goseong in South Gyeongsang Province, and Incheongang estuary of Gochang in North Jeolla Province). It consists of a) figuring out main interests and stakeholder or beneficiaries of WPA and their information demand based on conservation, utilization, and management target in the WPA Conservation Plan, b) conducting research activities to gain outcome to address stakeholder's demand, and c) returning the research outcome to citizen scientists and making diffusion to the society. Based on the suggested method and process, citizen scientists conducted ecosystem monitoring (plants including Invasive Alien Plants, terrestrial insects, traces of mammals, discovering unknown wetland). As a result, citizen scientists contributed to collecting species information of 16 plans, 43 species of terrestrial insects, 5 mammals including Lutra lutra (Endangered Species I) and Prionailurus bengalensis (Endangered Species II). The authors constructed and provided distribution map of Invasive Alien Plants, which included information of location and density which citizen scientists registered, for Environment Agencies and local governments who manage 3 WPAs to aid data-based ecosystem policy, In further studies, not only accumulating research data and outcomes acquired from citizen science to suffice the policy demands but also deliberate reviewing policy applicability and social·economic ripple effect should be processed for the suggested Citizen Science in WPA to be settled down as a tool of ecosystem conservation and management.

A Contemplation on Measures to Advance Logistics Centers (물류센터 선진화를 위한 발전 방안에 대한 소고)

  • Sun, Il-Suck;Lee, Won-Dong
    • Journal of Distribution Science
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 2011
  • As the world becomes more globalized, business competition becomes fiercer, while consumers' needs for less expensive quality products are on the increase. Business operations make an effort to secure a competitive edge in costs and services, and the logistics industry, that is, the industry operating the storing and transporting of goods, once thought to be an expense, begins to be considered as the third cash cow, a source of new income. Logistics centers are central to storage, loading and unloading of deliveries, packaging operations, and dispensing goods' information. As hubs for various deliveries, they also serve as a core infrastructure to smoothly coordinate manufacturing and selling, using varied information and operation systems. Logistics centers are increasingly on the rise as centers of business supply activities, growing beyond their previous role of primarily storing goods. They are no longer just facilities; they have become logistics strongholds that encompass various features from demand forecast to the regulation of supply, manufacturing, and sales by realizing SCM, taking into account marketability and the operation of service and products. However, despite these changes in logistics operations, some centers have been unable to shed their past roles as warehouses. For the continuous development of logistics centers, various measures would be needed, including a revision of current supporting policies, formulating effective management plans, and establishing systematic standards for founding, managing, and controlling logistics centers. To this end, the research explored previous studies on the use and effectiveness of logistics centers. From a theoretical perspective, an evaluation of the overall introduction, purposes, and transitions in the use of logistics centers found issues to ponder and suggested measures to promote and further advance logistics centers. First, a fact-finding survey to establish demand forecast and standardization is needed. As logistics newspapers predicted that after 2012 supply would exceed demand, causing rents to fall, the business environment for logistics centers has faltered. However, since there is a shortage of fact-finding surveys regarding actual demand for domestic logistic centers, it is hard to predict what the future holds for this industry. Accordingly, the first priority should be to get to the essence of the current market situation by conducting accurate domestic and international fact-finding surveys. Based on those, management and evaluation indicators should be developed to build the foundation for the consistent advancement of logistics centers. Second, many policies for logistics centers should be revised or developed. Above all, a guideline for fair trade between a shipper and a commercial logistics center should be enacted. Since there are no standards for fair trade between them, rampant unfair trades according to market practices have brought chaos to market orders, and now the logistics industry is confronting its own difficulties. Therefore, unfair trade cases that currently plague logistics centers should be gathered by the industry and fair trade guidelines should be established and implemented. In addition, restrictive employment regulations for foreign workers should be eased, and logistics centers should be charged industry rates for the use of electricity. Third, various measures should be taken to improve the management environment. First, we need to find out how to activate value-added logistics. Because the traditional purpose of logistics centers was storage and loading/unloading of goods, their profitability had a limit, and the need arose to find a new angle to create a value added service. Logistic centers have been perceived as support for a company's storage, manufacturing, and sales needs, not as creators of profits. The center's role in the company's economics has been lowering costs. However, as the logistics' management environment spiraled, along with its storage purpose, developing a new feature of profit creation should be a desirable goal, and to achieve that, value added logistics should be promoted. Logistics centers can also be improved through cost estimation. In the meantime, they have achieved some strides in facility development but have still fallen behind in others, particularly in management functioning. Lax management has been rampant because the industry has not developed a concept of cost estimation. The centers have since made an effort toward unification, standardization, and informatization while realizing cost reductions by establishing systems for effective management, but it has been hard to produce profits. Thus, there is an urgent need to estimate costs by determining a basic cost range for each division of work at logistics centers. This undertaking can be the first step to improving the ineffective aspects of how they operate. Ongoing research and constant efforts have been made to improve the level of effectiveness in the manufacturing industry, but studies on resource management in logistics centers are hardly enough. Thus, a plan to calculate the optimal level of resources necessary to operate a logistics center should be developed and implemented in management behavior, for example, by standardizing the hours of operation. If logistics centers, shippers, related trade groups, academic figures, and other experts could launch a committee to work with the government and maintain an ongoing relationship, the constraint and cooperation among members would help lead to coherent development plans for logistics centers. If the government continues its efforts to provide financial support, nurture professional workers, and maintain safety management, we can anticipate the continuous advancement of logistics centers.

  • PDF

Spatial effect on the diffusion of discount stores (대형할인점 확산에 대한 공간적 영향)

  • Joo, Young-Jin;Kim, Mi-Ae
    • Journal of Distribution Research
    • /
    • v.15 no.4
    • /
    • pp.61-85
    • /
    • 2010
  • Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center. $$\array{{S_{i,t}=(p_i+q_i{\frac{Y_{i,t-1}}{m_i}})(m_i-Y_{i,t-1})\;i{\in}\{1,{\cdots},I\}\;(1a)}\\{S_{j,t}=(p_j+q_j{\frac{Y_{j,t-1}}{m_i}}+{\sum\limits_{i=1}^I}{\gamma}_{ij}{\frac{Y_{i,t-1}}{m_i}})(m_j-Y_{j,t-1})\;i{\in}\{1,{\cdots},I\},\;j{\in}\{I+1,{\cdots},I+J\}\;(1b)}}$$ We rise two research questions. (1) The proposed spatial diffusion model is more effective than the Bass model to describe the diffusion of discount stores. (2) The more similar retail environment of diffusing center with that of the vicinity of the contiguous market is, the larger spatial effect of diffusing center on diffusion of the vicinity of the contiguous market is. To examine above two questions, we adopt the Bass model to estimate diffusion of discount store first. Next spatial diffusion model where spatial factor is added to the Bass model is used to estimate it. Finally by comparing Bass model with spatial diffusion model, we try to find out which model describes diffusion of discount store better. In addition, we investigate the relationship between similarity of retail environment(conceptual distance) and spatial factor impact with correlation analysis. Result and Implication: We suggest spatial diffusion model to describe diffusion of discount stores. To examine the proposed spatial diffusion model, 347 domestic discount stores are used and we divide nation into 5 districts, Seoul-Gyeongin(SG), Busan-Gyeongnam(BG), Daegu-Gyeongbuk(DG), Gwan- gju-Jeonla(GJ), Daejeon-Chungcheong(DC), and the result is shown

    . In a result of the Bass model(I), the estimates of innovation coefficient(p) and imitation coefficient(q) are 0.017 and 0.323 respectively. While the estimate of market potential is 384. A result of the Bass model(II) for each district shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. A result of the Bass model(II) shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. In a result of spatial diffusion model(IV), we can notice the changes between coefficients of the bass model and those of the spatial diffusion model. Except for GJ, the estimates of innovation and imitation coefficients in Model IV are lower than those in Model II. The changes of innovation and imitation coefficients are reflected to spatial coefficient(${\gamma}$). From spatial coefficient(${\gamma}$) we can infer that when the diffusion in the vicinity of the diffusing center occurs, the diffusion is influenced by one in the diffusing center. The difference between the Bass model(II) and the spatial diffusion model(IV) is statistically significant with the ${\chi}^2$-distributed likelihood ratio statistic is 16.598(p=0.0023). Which implies that the spatial diffusion model is more effective than the Bass model to describe diffusion of discount stores. So the research question (1) is supported. In addition, we found that there are statistically significant relationship between similarity of retail environment and spatial effect by using correlation analysis. So the research question (2) is also supported.

  • PDF
  • Development of New Variables Affecting Movie Success and Prediction of Weekly Box Office Using Them Based on Machine Learning (영화 흥행에 영향을 미치는 새로운 변수 개발과 이를 이용한 머신러닝 기반의 주간 박스오피스 예측)

    • Song, Junga;Choi, Keunho;Kim, Gunwoo
      • Journal of Intelligence and Information Systems
      • /
      • v.24 no.4
      • /
      • pp.67-83
      • /
      • 2018
    • The Korean film industry with significant increase every year exceeded the number of cumulative audiences of 200 million people in 2013 finally. However, starting from 2015 the Korean film industry entered a period of low growth and experienced a negative growth after all in 2016. To overcome such difficulty, stakeholders like production company, distribution company, multiplex have attempted to maximize the market returns using strategies of predicting change of market and of responding to such market change immediately. Since a film is classified as one of experiential products, it is not easy to predict a box office record and the initial number of audiences before the film is released. And also, the number of audiences fluctuates with a variety of factors after the film is released. So, the production company and distribution company try to be guaranteed the number of screens at the opining time of a newly released by multiplex chains. However, the multiplex chains tend to open the screening schedule during only a week and then determine the number of screening of the forthcoming week based on the box office record and the evaluation of audiences. Many previous researches have conducted to deal with the prediction of box office records of films. In the early stage, the researches attempted to identify factors affecting the box office record. And nowadays, many studies have tried to apply various analytic techniques to the factors identified previously in order to improve the accuracy of prediction and to explain the effect of each factor instead of identifying new factors affecting the box office record. However, most of previous researches have limitations in that they used the total number of audiences from the opening to the end as a target variable, and this makes it difficult to predict and respond to the demand of market which changes dynamically. Therefore, the purpose of this study is to predict the weekly number of audiences of a newly released film so that the stakeholder can flexibly and elastically respond to the change of the number of audiences in the film. To that end, we considered the factors used in the previous studies affecting box office and developed new factors not used in previous studies such as the order of opening of movies, dynamics of sales. Along with the comprehensive factors, we used the machine learning method such as Random Forest, Multi Layer Perception, Support Vector Machine, and Naive Bays, to predict the number of cumulative visitors from the first week after a film release to the third week. At the point of the first and the second week, we predicted the cumulative number of visitors of the forthcoming week for a released film. And at the point of the third week, we predict the total number of visitors of the film. In addition, we predicted the total number of cumulative visitors also at the point of the both first week and second week using the same factors. As a result, we found the accuracy of predicting the number of visitors at the forthcoming week was higher than that of predicting the total number of them in all of three weeks, and also the accuracy of the Random Forest was the highest among the machine learning methods we used. This study has implications in that this study 1) considered various factors comprehensively which affect the box office record and merely addressed by other previous researches such as the weekly rating of audiences after release, the weekly rank of the film after release, and the weekly sales share after release, and 2) tried to predict and respond to the demand of market which changes dynamically by suggesting models which predicts the weekly number of audiences of newly released films so that the stakeholders can flexibly and elastically respond to the change of the number of audiences in the film.

    SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

    • Joe, Denis Yongmin;Nam, Kihwan
      • Journal of Intelligence and Information Systems
      • /
      • v.23 no.4
      • /
      • pp.77-110
      • /
      • 2017
    • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.