• Title/Summary/Keyword: Distribution Enterprises

Search Result 618, Processing Time 0.025 seconds

Design of Comprehensive Security Vulnerability Analysis System through Efficient Inspection Method according to Necessity of Upgrading System Vulnerability (시스템 취약점 개선의 필요성에 따른 효율적인 점검 방법을 통한 종합 보안 취약성 분석 시스템 설계)

  • Min, So-Yeon;Jung, Chan-Suk;Lee, Kwang-Hyong;Cho, Eun-Sook;Yoon, Tae-Bok;You, Seung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.1-8
    • /
    • 2017
  • As the IT environment becomes more sophisticated, various threats and their associated serious risks are increasing. Threats such as DDoS attacks, malware, worms, and APT attacks can be a very serious risk to enterprises and must be efficiently managed in a timely manner. Therefore, the government has designated the important system as the main information communication infrastructure in consideration of the impact on the national security and the economic society according to the 'Information and Communication Infrastructure Protection Act', which, in particular, protects the main information communication infrastructure from cyber infringement. In addition, it conducts management supervision such as analysis and evaluation of vulnerability, establishment of protection measures, implementation of protection measures, and distribution of technology guides. Even now, security consulting is proceeding on the basis of 'Guidance for Evaluation of Technical Vulnerability Analysis of Major IT Infrastructure Facilities'. There are neglected inspection items in the applied items, and the vulnerability of APT attack, malicious code, and risk are present issues that are neglected. In order to eliminate the actual security risk, the security manager has arranged the inspection and ordered the special company. In other words, it is difficult to check against current hacking or vulnerability through current system vulnerability checking method. In this paper, we propose an efficient method for extracting diagnostic data regarding the necessity of upgrading system vulnerability check, a check item that does not reflect recent trends, a technical check case for latest intrusion technique, a related study on security threats and requirements. Based on this, we investigate the security vulnerability management system and vulnerability list of domestic and foreign countries, propose effective security vulnerability management system, and propose further study to improve overseas vulnerability diagnosis items so that they can be related to domestic vulnerability items.

A Study on Recent Research Trend in New Product Development Using Keyword Network Analysis (키워드 네트워크 분석을 이용한 NPD 연구의 진화 및 연구동향)

  • Pyun, JeBum;Jeong, EuiBeom
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.119-134
    • /
    • 2018
  • Today, many firms face the environment of high uncertainty and severe competition due to the rapid technology development and the diverse needs of customers. In the business environment, one of the most important ways to gain sustainable competitive advantage and future growth engine is related to NPD (New Product Development), which is a very important issue for practice and academia. Thus, this study intends to provide new values to practitioners and researchers related to NPD by analyzing current research trends and future trends in NPD field. For this, we bibliometrically analyzed keyword networks which consist of keywords that were already published in the eminent journals from Scopus database to generate insights that have not been captured in the previous reviews on the topic. As a result, we could understand the extant research streams in NPD field, and suggest the changes of specific research topics based on the connected relationships among keywords over the time. In addition, we also foresaw the general future research trends in NPD field based on the keywords according to preferential attachment processes. Through this study, it was confirmed that NPD keyword network is a small world network that follows the distribution of power law and the growth of network is formed by link formation by keyword preferential attachment. In addition, through component analysis and centrality analysis, keywords such as Innovation, New product innovation, Risk management, Concurrent engineering, Research and development, and Product life cycle management are highly centralized in NPD keyword network. On the other hand, as a result of examining the change of preferential attachment of keywords over the time, we suggested the required new research direction including i) NPD collaboration with suppliers, ii) NPD considering market uncertainty, iii) NPD considering convergence with the other academic areas like technology management and knowledge management, iv) NPD from SME(Small and medium enterprises) perspective. The results of this study can be used to determine the research trends of NPD and the new research themes for interdisciplinary studies with other disciplines.

A Difference of Social Awareness between Northern and Southern Vietnam for Corporate Social Responsibility Activities (베트남 내 기업 CSR활동에 대한 사회인식 지역비교 : 북부 하노이와 남부 호치민을 중심으로)

  • JUNG, Hye young;TRAN, Thi thuy
    • The Southeast Asian review
    • /
    • v.28 no.3
    • /
    • pp.159-212
    • /
    • 2018
  • This paper is focused on analyzing the social environment of a rapidly changing on Vietnamese company. The key analysis of this study is on the change of perception in Vietnam and the regional difference of CSR acception. The social acceptance research of CSR is centered on the comparative analysis of Korean, Japanese and Chinese companies Social Activities in Vietnam. In addition, This paper seek to way of contribute to the sustainable development of Korean companies, and its harmonious cooperation with Vietnamese society through reviewing the CSR activities and direction of their CSR expectation. In the paper, linkage analysis was conducted with the results of the study on CSR value development process in Vietnam society and analysis of social responsibility values obtained from empirical studies. Through this, finally, we trying to search the value of social responsibility in Vietnam and its future directions. When we understand Vietnam's CSR, based on 'locality' of Vietnam, Northern and Southern can be understand on its different backgrounds. And it can be analyzed by their CSR characteristics of acception. As the result of this research, In the North, Foreign companies' CSR is understanded to be viewed from the corporate economic income and distribution. In the South, there is a strong tendency to understand CSR activities of foreign companies as marketing activities. On the whole, In northern Hanoi, there was a strong expectation in terms of 'employment improvement' and 'workers' working conditions'. In the South, there was a greater interest in improving the 'quality of life of residents' and 'consumer protection'. This is due to the influence of the economic system experienced during the process of different colonization, modernization and communization between the two regions. Since the Reform and Opening of Vietnam, Social Awareness of CSR seems that the regional differences were formed by the pace of economic development and the economic environment has played a role. In particular, the social acceptance of CSR values showed a slight difference in recognition between the North and South regions, but as both regions showed common hope for 'intervention in the role of government'. Therefore, Social Awareness of Vietnam's CSR is based on relation of 'government-society' formed from the 'Communitarianism'. As foreign investment flows more, CSR awareness and expectations in Vietnam's society will increase further. And the CSR expectations of local governments and stakeholder will be more complicated. It is time to check the needs of Vietnamese society in relation to locality of the social responsibility activities.

Changes in North Korea's Financial System During the Kim Jong-un Era - Based on North Korean Literature (김정은 시대 북한의 금융제도 변화 - 북한 문헌 분석을 중심으로 -)

  • Kim, Minjung;Mun, Sung Min
    • Economic Analysis
    • /
    • v.27 no.4
    • /
    • pp.70-119
    • /
    • 2021
  • This paper analyzes the changes in financial reform during the Kim Jong-un era based on North Korean literature. We find that North Korea has systematically and functionally separated the central bank from commercial banks since the Kim Jong-un era began. In addition, enterprises have been allowed to withdraw cash from bank accounts and make inter-enterprise cash payments. In other words, nowadays non-cash currencies with passive money can partially serve as active money with purchasing power. With the systematic and functional separation of the central bank and the commercial bank, the issuance of the central bank changed to a money supply method through the commercial bank, and changes in the currency distribution structure have allowed commercial bank's credit creation function to be implemented. This means that the banking system and the monetary·payment system of the socialist planned economy are changing in the way of the market economy. Reforms in the financial sector are believed to have been necessary to support changes in the economic system and to restore the function of the public financial sector. These changes have progressed in terms of the level of reform, but they are still considered similar to the period of the former Soviet Union's Perestroika or to the early period of China's reform and opening. Although North Korea's financial reform is superior in terms of enacting the banking law, it is insufficient in terms of realizing the functions of commercial banks. In addition, it is assessed that institutional constraints such as maintaining a planned economy, and the lack of confidence in public finances limit the effectiveness and development of the financial system. It should be noted that these results are based on literature published in North Korea. In other words, there is a limit in the fact that such recent changes have been carried out on a trial basis in some areas, or have been carried out in a full-scale manner with a blueprint, since Kim Jong-un's inauguration.

Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries (분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천)

  • Jang, Yeongjin;Won, Jongkwan;Lee, Chaerok
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.69-88
    • /
    • 2022
  • One of the characteristics of South Korea's economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model. We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products. Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model. Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented. There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values. Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.

Study on the effect of small and medium-sized businesses being selected as suitable business types, on the franchise industry (중소기업적합업종선정이 프랜차이즈산업에 미치는 영향에 관한 연구)

  • Kang, Chang-Dong;Shin, Geon-Chel;Jang, Jae Nam
    • Journal of Distribution Research
    • /
    • v.17 no.5
    • /
    • pp.1-23
    • /
    • 2012
  • The conflict between major corporations and small and medium-sized businesses is being aggravated, the trickle down effect is not working properly, and, as the controversy surrounding the effectiveness of the business limiting system continues to swirl, the plan proposed to protect the business domain of small and medium-sized businesses, resolve polarization between these businesses and large corporations, and protect small family run stores is the suitable business type designation system for small and medium-sized businesses. The current status of carrying out this system of selecting suitable business types among small and medium-sized businesses involves receiving applications for 234 items among the suitable business types and items from small and medium-sized businesses in manufacturing, and then selecting the items of the consultative group by analyzing and investigating the actual conditions. Suitable business type designation in the service industry will involve designation with priority on business types that are experiencing social conflict. Three major classifications of the service industry, related to the livelihood of small and medium-sized businesses, will be first designated, and subsequently this will be expanded sequentially. However, there is the concern that when designated as a suitable business type or item, this will hinder the growth motive for small to medium-sized businesses, and designation all cause decrease in consumer welfare. Also it is highly likely that it will operate as a prior regulation, cause side-effects by limiting competition systematically, and also be in violation against the main regulations of the FTA system. Moreover, it is pointed out that the system does not sufficiently reflect reverse discrimination factor against large corporations. Because conflict between small to medium sized businesses and large corporations results from the expansion of corporations to the service industry, which is unrelated to their key industry, it is necessary to introduce an advanced contract method like a master franchise or local franchise system and to develop local small to medium sized businesses through a franchise system to protect these businesses and dealers. However, this method may have an effect that contributes to stronger competitiveness of small to medium sized franchise businesses by advancing their competitiveness and operational methods a step further, but also has many negative aspects. First, as revealed by the Ministry of Knowledge Economy, the franchise industry is contributing to the strengthening of competitiveness through the economy of scale by organizing existing individual proprietors and increasing the success rate of new businesses. It is also revealed to be a response measure by the government to stabilize the economy of ordinary people and is emphasized as a 'useful way' to revitalize the service industry and improve the competitiveness of individual proprietors, and has been involved in contributions to creating jobs and expanding the domestic market by providing various services to consumers. From this viewpoint, franchises fit the purpose of the suitable business type system and is not something that is against it. Second, designation as a suitable business type may decrease investment for overseas expansion, R&D, and food safety, as well negatively affect the expansion of overseas corporations that have entered the domestic market, due to the contraction and low morale of large domestic franchise corporations that have competitiveness internationally. Also because domestic franchise businesses are hard pressed to secure competitiveness with multinational overseas franchise corporations that are operating in Korea, the system may cause difficulty for domestic franchise businesses in securing international competitiveness and also may result in reverse discrimination against these overseas franchise corporations. Third, the designation of suitable business type and item can limit the opportunity of selection for consumers who have up to now used those products and can cause a negative effect that reduces consumer welfare. Also, because there is the possibility that the range of consumer selection may be reduced when a few small to medium size businesses monopolize the market, by causing reverse discrimination between these businesses, the role of determining the utility of products must be left ot the consumer not the government. Lastly, it is desirable that this is carried out with the supplementation of deficient parts in the future, because fair trade is already secured with the enforcement of the franchise trade law and the best trade standard of the Fair Trade Commission. Overlapping regulations by the suitable business type designation is an excessive restriction in the franchise industry. Now, it is necessary to establish in the domestic franchise industry an environment where a global franchise corporation, which spreads Korean culture around the world, is capable of growing, and the active support by the government is needed. Therefore, systems that do not consider the process or background of the growth of franchise businesses and harm these businesses for the sole reason of them being large corporations must be removed. The inhibition of growth to franchise enterprises may decrease the sales of franchise stores, in some cases even bankrupt them, as well as cause other problems. Therefore the suitable business type system should not hinder large corporations, and as both small dealers and small to medium size businesses both aim at improving competitiveness and combined growth, large corporations, small dealers and small to medium sized businesses, based on their mutual cooperation, should not include franchise corporations that continue business relations with them in this system.

  • PDF

The Prediction of Export Credit Guarantee Accident using Machine Learning (기계학습을 이용한 수출신용보증 사고예측)

  • Cho, Jaeyoung;Joo, Jihwan;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.83-102
    • /
    • 2021
  • The government recently announced various policies for developing big-data and artificial intelligence fields to provide a great opportunity to the public with respect to disclosure of high-quality data within public institutions. KSURE(Korea Trade Insurance Corporation) is a major public institution for financial policy in Korea, and thus the company is strongly committed to backing export companies with various systems. Nevertheless, there are still fewer cases of realized business model based on big-data analyses. In this situation, this paper aims to develop a new business model which can be applied to an ex-ante prediction for the likelihood of the insurance accident of credit guarantee. We utilize internal data from KSURE which supports export companies in Korea and apply machine learning models. Then, we conduct performance comparison among the predictive models including Logistic Regression, Random Forest, XGBoost, LightGBM, and DNN(Deep Neural Network). For decades, many researchers have tried to find better models which can help to predict bankruptcy since the ex-ante prediction is crucial for corporate managers, investors, creditors, and other stakeholders. The development of the prediction for financial distress or bankruptcy was originated from Smith(1930), Fitzpatrick(1932), or Merwin(1942). One of the most famous models is the Altman's Z-score model(Altman, 1968) which was based on the multiple discriminant analysis. This model is widely used in both research and practice by this time. The author suggests the score model that utilizes five key financial ratios to predict the probability of bankruptcy in the next two years. Ohlson(1980) introduces logit model to complement some limitations of previous models. Furthermore, Elmer and Borowski(1988) develop and examine a rule-based, automated system which conducts the financial analysis of savings and loans. Since the 1980s, researchers in Korea have started to examine analyses on the prediction of financial distress or bankruptcy. Kim(1987) analyzes financial ratios and develops the prediction model. Also, Han et al.(1995, 1996, 1997, 2003, 2005, 2006) construct the prediction model using various techniques including artificial neural network. Yang(1996) introduces multiple discriminant analysis and logit model. Besides, Kim and Kim(2001) utilize artificial neural network techniques for ex-ante prediction of insolvent enterprises. After that, many scholars have been trying to predict financial distress or bankruptcy more precisely based on diverse models such as Random Forest or SVM. One major distinction of our research from the previous research is that we focus on examining the predicted probability of default for each sample case, not only on investigating the classification accuracy of each model for the entire sample. Most predictive models in this paper show that the level of the accuracy of classification is about 70% based on the entire sample. To be specific, LightGBM model shows the highest accuracy of 71.1% and Logit model indicates the lowest accuracy of 69%. However, we confirm that there are open to multiple interpretations. In the context of the business, we have to put more emphasis on efforts to minimize type 2 error which causes more harmful operating losses for the guaranty company. Thus, we also compare the classification accuracy by splitting predicted probability of the default into ten equal intervals. When we examine the classification accuracy for each interval, Logit model has the highest accuracy of 100% for 0~10% of the predicted probability of the default, however, Logit model has a relatively lower accuracy of 61.5% for 90~100% of the predicted probability of the default. On the other hand, Random Forest, XGBoost, LightGBM, and DNN indicate more desirable results since they indicate a higher level of accuracy for both 0~10% and 90~100% of the predicted probability of the default but have a lower level of accuracy around 50% of the predicted probability of the default. When it comes to the distribution of samples for each predicted probability of the default, both LightGBM and XGBoost models have a relatively large number of samples for both 0~10% and 90~100% of the predicted probability of the default. Although Random Forest model has an advantage with regard to the perspective of classification accuracy with small number of cases, LightGBM or XGBoost could become a more desirable model since they classify large number of cases into the two extreme intervals of the predicted probability of the default, even allowing for their relatively low classification accuracy. Considering the importance of type 2 error and total prediction accuracy, XGBoost and DNN show superior performance. Next, Random Forest and LightGBM show good results, but logistic regression shows the worst performance. However, each predictive model has a comparative advantage in terms of various evaluation standards. For instance, Random Forest model shows almost 100% accuracy for samples which are expected to have a high level of the probability of default. Collectively, we can construct more comprehensive ensemble models which contain multiple classification machine learning models and conduct majority voting for maximizing its overall performance.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.