• Title/Summary/Keyword: Distribution Department

Search Result 23,857, Processing Time 0.048 seconds

Model-Based Prediction of the Population Proportion and Distribution Function Using a Logistic Regression

  • Park, Min-Gue
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.783-791
    • /
    • 2008
  • Estimation procedure of the finite population proportion and distribution function is considered. Based on a logistic regression model, an approximately model- optimal estimator is defined and conditions for the estimator to be design-consistent are given. Simulation study shows that the model-optimal design-consistent estimator defined under a logistic regression model performs well in estimating the finite population distribution function.

ON THE PRODUCT OF t AND BESSEL RANDOM VARIABLES

  • NADARAJAH SARALEES
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.547-562
    • /
    • 2005
  • The distribution of products of random variables is of interest in many areas of the sciences, engineering and medicine. This has increased the need to have available the widest possible range of statistical results on products of random variables. In this note, the distribution of the product | XY | is derived when X and Y are Student's t and Bessel function random variables distributed independently of each other.

A Distribution for Regulated ${\mu}-Brownian$ Motion Process with Control Barrier at $x_{0}$

  • Park, Young-Sool
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.69-78
    • /
    • 1996
  • Consider a natural model for stochastic flow systems is Brownian motion, which is Brownian motion on the positive real line with constant drift and constant diffusion coefficient, modified by an impenetrable reflecting barrier at $x_{0}$. In this paper, we investigate the joint distribution functions and study on the distribution of the first-passage time. Also we find out the distribution of ${\mu}-RBMPx_{0}$.

  • PDF

ON SIZE-BIASED POISSON DISTRIBUTION AND ITS USE IN ZERO-TRUNCATED CASES

  • Mir, Khurshid Ahmad
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.153-160
    • /
    • 2008
  • A size-biased Poisson distribution is defined. Its characterization by using a recurrence relation for first order negative moment of the distribution is obtained. Different estimation methods for the parameter of the model are also discussed. R-Software has been used for making a comparison among the three different estimation methods.

  • PDF

Change-Point Estimation and Bootstrap Confidence Regions in Weibull Distribution

  • Jeong, Kwang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.359-370
    • /
    • 1999
  • We considered a change-point hazard rate model generalizing constant hazard rate model. This type of model is very popular in the sense that the Weibull and exponential distributions formulating survival time data are the special cases of it. Maximum likelihood estimation and the asymptotic properties such as the consistency and its limiting distribution of the change-point estimator were discussed. A parametric bootstrap method for finding confidence intervals of the unknown change-point was also suggested and the proposed method is explained through a practical example.

  • PDF

AMLEs for Rayleigh Distribution Based on Progressive Type-II Censored Data

  • Seo, Eun-Hyung;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.329-344
    • /
    • 2007
  • In this paper, we shall propose the AMLEs of the scale parameter and the location parameter in the two-parameter Rayleigh distribution based on progressive Type-II censored samples when one parameter is known. We also propose the AMLEs of the two parameters in the Rayleigh distribution based on progressive Type-II censored samples when two parameters are unknown. We simulate the mean squared errors of the proposed estimators through Monte Carlo simulation for various censoring schemes.

A Comparison of Distribution-free Two-sample Procedures Based on Placements or Ranks

  • Kim, Dong-Jae
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.135-149
    • /
    • 1994
  • We discussed a comparison of distribution-free two-sample procedures based on placements or ranks. Iterative asymptotic distribution of both two-sample procedures is studies and small sample Monte Carlo simulation results are presented. Also, we proposed the Hodges-Lehmann type location estimator based on linear placement statistics.

  • PDF

ON CHARACTERIZATIONS OF THE NORMAL DISTRIBUTION BY INDEPENDENCE PROPERTY

  • LEE, MIN-YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.261-265
    • /
    • 2017
  • Let X and Y be independent identically distributed nondegenerate random variables with common absolutely continuous probability distribution function F(x) and the corresponding probability density function f(x) and $E(X^2)$<${\infty}$. Put Z = max(X, Y) and W = min(X, Y). In this paper, it is proved that Z - W and Z + W or$(X-Y)^2$ and X + Y are independent if and only if X and Y have normal distribution.

AN APPROXIMATE DISTRIBUTION OF THE SQUARED COEFFICIENT OF VARIATION UNDER GENERAL POPULATION

  • Lee Yong-Ghee
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.3
    • /
    • pp.331-341
    • /
    • 2006
  • An approximate distribution of the plug-in estimator of the squared coefficient of variation ($CV^2$) is derived by using Edgeworth expansions under general population models. Also bias of the estimator is investigated for several important distributions. Under the normal distribution, we proposed the new estimator for $CV^2$ based on median of the sampling distribution of plug-in estimator.

The General Mornent of Non-central Wishart Distribution

  • Chul Kang;Kim, Byung-Chun
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.393-406
    • /
    • 1996
  • We obtain the general moment of non-central Wishart distribu-tion, using the J-th moment of a matrix quadratic form and the 2J-th moment of the matrix normal distribution. As an example, the second moment and kurtosis of non-central Wishart distribution are also investigated.

  • PDF