Journal of the Korean Data and Information Science Society
/
v.25
no.1
/
pp.237-244
/
2014
It is known that the dierence in the length between two location parameters of two random variables is equivalent to the difference in the area between two cumulative distribution functions. In this paper, we suggest two applications by using the difference of distribution functions. The first is that the difference of expectations of a certain function of two continuous random variables such as the differences of two kth moments and two moment generating functions could be defined by using the difference between two univariate distribution functions. The other is that the difference in the volume between two empirical bivariate distribution functions is derived. If their covariance is estimated to be zero, the difference in the volume between two empirical bivariate distribution functions could be defined as the difference in two certain areas.
This paper presents characterizations based on the identical distribution and the finite moments of the exponential distribution by record values. We prove that $X{\in}EXP({\sigma})$, ${\sigma}$>0, if and only if $X_{U(n+k)}-X_{U(n)}$ and $X_{U(n)}-X_{U(n-k)}$ for n > 1 and $k{\geq}1$ are identically distributed. Also, we show that $X{\in}EXP({\sigma})$, ${\sigma}$>0, if and only if $E(X_{U(n+k)}-X_{U(n)})=E(X_{U(n)}-X_{U(n-k)})$ for n>1 and $k{\geq}1$.
The objectives of this thesis are : first, to estimate the parameters and Pr[X < Y] in the Marshall and Olkin's Bivariate Exponential Distribution ; and secondly, to compare the Bayes estimators of Pr[X < Y] with maximum likelihood estimator of Pr[X < Y] in the Marshall and Olkin's Bivariate Exponential Distribution. Through the Monte Carlo Simulation, we observed that the Bayes estimators of Pr[X < Y] perform better than the maximum likelihood estimator of Pr[X < Y] and the Bayes estimator of Pr[X < Y] with gamma prior distribution performs better than with vague prior distribution with respect to bias and mean squared error in the Marshall and Olkin's Bivariate Exponential Distribution.
Communications for Statistical Applications and Methods
/
v.26
no.6
/
pp.623-633
/
2019
This paper proposes two distance measures between two cumulative hazard functions that can be obtained by comparing their difference and ratio, respectively. Then we estimate the measures and present goodness of t test statistics. Since the proposed test statistics are expressed in terms of the cumulative hazard functions, we can easily give more weights on earlier (or later) departures in cumulative hazards if we like to place an emphasis on earlier (or later) departures. We also show that these test statistics present comparable performances with other well-known test statistics based on the empirical distribution function for an exponential null distribution. The proposed test statistic is an omnibus test which is applicable to other lots of distributions than an exponential distribution.
This paper proposes a stochastic modeling of plug-in electric vehicles (PEVs) distribution in power systems, and analyzes the corresponding clustering characteristic. It is essential for power utilities to estimate the PEV charging demand as the penetration level of PEV is expected to increase rapidly in the near future. Although the distribution of PEVs in power systems is the primary factor for estimating the PEV charging demand, the data currently available are statistics related to fuel-driven vehicles and to existing electric demands in power systems. In this paper, we calculate the number of households using electricity at individual ending buses of a power system based on the electric demands. Then, we estimate the number of PEVs per household using the probability density function of PEVs derived from the given statistics about fuel-driven vehicles. Finally, we present the clustering characteristic of the PEV distribution via case studies employing the test systems.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.13
no.1
/
pp.55-72
/
2009
A misclassified size-biased modified power series distribution (MSBMPSD) where some of the observations corresponding to x = c + 1 are misclassified as x = c with probability $\alpha$, is defined. We obtain its recurrence relations among the raw moments, the central moments and the factorial moments. Discussion of the effect of the misclassification on the variance is considered. To illustrate the situation under consideration some of its particular cases like the size-biased generalized negative binomial (SBGNB), the size-biased generalized Poisson (SBGP) and sizebiased Borel distributions are included. Finally, an example is presented for the size-biased generalized Poisson distribution to illustrate the results.
This paper presents a mathematical model predicting the temperature distribution in rotating GMA welding. The bead width increases with rotation frequency at the same rotation diameter because the molten droplets are deflected by centrifugal force. The numerical solution is obtained by solving the transient three-dimensional heat conduction equation considering the heat input from the welding arc, cathode heating and molten droplets. Generally in GMA welding the heat input may be assumed as a normally distributed source, but the droplet deflection causes some changes in the heat input distribution. To estimate the heat flux distribution due to the molten droplet, the contact point where the droplet is transferred on the weld pool surface is calculated from the flight trajectory of the droplets under the arc plasma velocity field obtained from the arc plasma analysis. The numerical analysis shows a tendency of broadened bead width and shallow penetration depth with the increase of rotating frequency. The simulation results are in good agreement with those obtained by the experiments under various welding conditions.
International Journal of Reliability and Applications
/
v.1
no.1
/
pp.49-64
/
2000
We consider a system whose inherent life follows an Erlang distribution, which is subject to two heterogeneous random shocks. Minor shocks arrive according to a renewal process and each causes the system to fail independently with a certain probability. A major shock whose interarrival times follow an Erlang distribution causes the system to fail with probability one. The Laplace transform of the distribution of the time to system failure is derived in a functional form of the Laplace transform of the interarrival time distribution of minor shocks. An algorithm is given for the computation of the moments of the time to system failure.
International Journal of Reliability and Applications
/
v.17
no.1
/
pp.65-84
/
2016
Motivated by the recent work of Cordeiro and Castro (2011), we study the Kumaraswamy exponentiated Frechet distribution (KEF). We derive some mathematical properties of the (KEF) including moment generating function, moments, quantile function and incomplete moment. We provide explicit expressions for the density function of the order statistics and their moments. In addition, the method of maximum likelihood and least squares and weighted least squares estimators are discuss for estimating the model parameters. A real data set is used to illustrate the importance and flexibility of the new distribution.
Communications for Statistical Applications and Methods
/
v.18
no.1
/
pp.103-110
/
2011
Exponential distribution is widely adopted as a lifetime model. Many authors have considered the interval estimation of the parameters of two-parameter exponential distribution based on complete and censored samples. In this paper, we consider the interval estimation of the location and scale parameters and the joint confidence region of the parameters of two-parameter exponential distribution based on upper records. A simulation study is done for the performance of all proposed confidence intervals and regions. We also propose the predictive intervals of the future records. Finally, a numerical example is given to illustrate the proposed methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.