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Abstract. We consider a system whose inherent life follows an Erlang
distribution, which is subject to two heterogeneous random shocks. Mi-
nor shocks arrive according to a renewal process and each causes the
system to fail independently with a certain probability. A major shock
whose interarrival times follow an Erlang distribution causes the system
to fail with probability one. The Laplace transform of the distribution of
the time to system failure is derived in a functional form of the Laplace
transform of the interarrival time distribution of minor shocks. An algo-
rithm is given for the computation of the moments of the time to system
failure.
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1. INTRODUCTION

Consider a system which has a random life time following an Erlang distribution
and is subject to two independent and heterogeneous random shocks (minor and
major shocks). Generally, the term ”"shock” refers to environment causes such as
noise or vibration which may give rise to a system failure. An Erlang distribution
provides a good description of the life length having an increasing failure rate with
time; and it also has various shapes of probability density function according to its
parameters. A minor shock whose interarrival times are independent and identically
distributed with an arbitrary distribution may cause the system to fail with a cer-
tain probability. A major shock whose arrival time is assumed to follow an Erlang
distribution makes the system out of order, i.e., upon the arrival of a major shock
the system immediately fails. We are interested in the distribution as well as the
moments of time until the system fails, which is determined by the minimum value
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among the inherent system life, the arrival time of a critical minor shock, and the
time until a major shock occurs. Some traditional random shock models deal with
a system subject to random shocks, where each shock deteriorates the system by
a random amount of damage which is distributed with a common distribution [1 -
4]. Without consideration of the inherent system life, most studies in the literature
focus on homogeneous shocks occurring in accordance to a Poisson process.

This paper presents an analytic approach to deriving the Laplace transform
of the system failure time distribution, which provides an alternative method of
deriving the moments in a tractable manner. Mainly two steps are involved. First
we consolidate the minor and major shocks into a homogeneous shock whose arrival
causes the system to fail. In this regard, the consolidated shock will be referred
to as a critical shock. So, the time to system failure just becomes the minimum
between the inherent system life and the arrival time of the critical shock. Through
the renewal process involved in minor shocks, we first construct the distribution of
the time to a critical shock and thereafter derive its Laplace transform which is
directly used in the moments of the effective system life (time to system failure).
For a preliminary step to derive the Laplace transform of the effective system life,
we give a useful theorem that models the Laplace transform of the distribution
of the minimum between two random variables one of which at least follows an
Erlang distribution. Based on the formula of the theorem, the Laplace transform of
the effective system life is obtained as a functional form of the Laplace transform
of the interarrival time distribution of minor shocks. Thus a simple manipulation
produces the moments of the effective system life. Basically the Laplace transform
has a closed form. As a computational point of view, however, it is not trivial or
straightforward to compute the moments. Algorithms are provided for computing
the moments of the effective system life. The developed algorithm would be effective
if it is tractable to obtain the derivatives for the Laplace transform of the interarrival
time distribution of minor shocks.

The developed Laplace transform may have its applications in determining the
optimal replacement or repair period [1, 5, 6] and in analyzing cellular mobile com-
munication systems exploiting hierarchical cell-structure where a macrocell overlay-
ing a number of microcells provides alternate rputes for dropped calls in microcells
through overflow frpm microcell to macrocell (see [7 - 10]). In such a system, the
channel holding time is a key element in deriving QoS measures such as call blocking
probability. With the following interpretations the channel holding time corresponds
to the effective system life: the inherent system life is interpreted as the call dura-
tion of overflow calls, the inter-arrival time of monor shocks as the microcell dwell
time, and the arrival time of a major shock as the macrocell dwell time. On the
other hand, note that the channel occupancy time is directly determined by the call
duration and cell times which can be effectly characterized by an Erlang distribution
[11]. With this context, the Laplace transform developed here gives the moments of
channel holding time when exploiting a queueing policy for overflow calls.
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The rest of the paper is organized as follows: Section 2 gives model description
with the notations used in the paper. In Section 3, we derive the Laplace transform
of the effective system life distribution and moments. An algorithm for computing
the moments is given in Section 4. Finally, in Section 5 we present some numerical
examples.

2. MODEL DESCRIPTION

First, the definitions of random variables used in this paper are given in the
following:

X inherent system life with pdf f(t) and cdf F(t)

Y, interarrival time between (i — 1)th and ith minor shocks with pdf g(t) and cdf
G(t)

Z arrival time of a major shock with pdf gz(¢) and cdf Gz(t)

T arrival time of a minor shock causing the system to fail with pdf gr(¢) and cdf
Gr(t)

W arrival time of a critical shock with pdf gw (t), W = min(T, Z)
S effective system life with pdf gg(¢), S = min(X, W)
g system failure probability due to a minor shock 0 < ¢ < 1

We assume that X has an Erlang distribution with the pdf as

— ()\t)m_l )‘e—/\t

t) = ——— t>0 1
O T 1)
where m is a positive integer and A is a positive constant. Also, Z is assumed to

follow an Erlang distribution with parameters h and p having the pdf as

h—-1
02(0) = (L™, ¢30, 2

Note that the Erlang distribution is a preferable one in the computational point of
view since its tail distribution has a simple form of summation, which facilitates the
computation of complex integrals.

Now let us assume that the system starts to operate at time epoch 0. Each
arriving minor shock causes the system failure independently with probability g,
and a major shock immediately shuts down the system. Or, the system may fail due
to its inherent life. Hence, the system experiences the failure in the following cases
as illustrated in Fig. 1:
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Fig. 1. Four cases of failure instances

e It fails before any minor or major shock arrives (case 1).

o It fails due to an arbitrary minor shock (case 2).

It fails after surviving some consecutive number of minor shocks (case 3).

It fails due to a major shock (case 4).

Note that in cases 1 and 3 the system fails due to its inherent life not due to shocks.
In particular, as in case 3 a certain number of minor shocks may not affect the
system. Note also that the system failure time is represented as S = min(X, W)
where W = min(T, Z). The next section deals with the Laplace transformation of
the distribution of S .

3. LAPLACE TRANSFORM OF SYSTEM FAILURE TIME
DISTRIBUTION

This section mainly focuses on deriving the Laplace transform of effective system
life distribution, through which the moments of the effective system life can be
obtained. We first construct the distribution of arrival time of the critical shock.
After that, we present a useful theorem as a preliminary in determining the Laplace
transform.

3.1 Distribution of Critical Shock Arrival Time

The critical shock will be one of the followings: 1) a major shock arriving before
any minor shock (type 1), 2) a minor shock making the system fail before a major
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shock after a certain number of consecutive minor shocks which have no effect on the
system (type 2), or 3) a major shock arriving after a certain number of consecutive
minor shocks (type 3).

Let us define a random variable Ty with pdf gk, (¢) as

k
Tk=ZY;, k=1a27 (3)
i=1

where Y;’s are independent and identically distributed with G(t). Let g;(t) denote
the probability intensity of the critical shock arrival time for type i (i = 1,2,3).
Then, based on the definition of T; in Eq. (3) we obtain

g1(t) = %P{Z <t,Z <Y}
= g2(t)G(t) (4)
g2(t) = %ZP{Tk <t,T, < Z}(1 - q)k_lq
k=1
=Gz(t)) _on(t)(1 - )* g (5)
k=1
g3(t) = %ZP{Z <t,Te < Z<Tp}(1 - q)k
k=1
) t
=9z() > (1-9* | G(t-y)gn, (v)dy
k=1
0 t
=gz(t)) (1-¢gF | lon() — 9 W)ldy (6)
k=1

where the bar (~) means the tail distribution of the corresponding distribution. The
integral fot G(t—y)gr, (y)dy in Eq. (6) is the probability that the arrival time of a ma-
jor shock Z is between Ty and Ty, given that Z = ¢, i.e., P{T}y < Z < T41|Z = t}.
With this context, the pdf of W can be constructed by

gw (t) = g1(t) + g2(t) + g3(t) (7)

because the following Egs. (8) - (10) guarantee that [;°[g1(t) + g2(t) + g3(t)]dt = 1

/ T qtydt=1- / ~ G (t)g(t)ds (®)
0 0
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/Ooo g2(t)dt =

(1-4¢) kl/ Gz(t)gr, (t)dt

(1- 1= (1-q) /0 " G(t)an, (t)dt

Il
3 10 007 I

(1-g ’“/ Gt (t)dt — 3 (1 - g)F / G2 (t)om, (Dt
k=1

(e ]

Il
S~

a2(t)g( t)dt+21—q>'° / Gz()lon,,, (&) — on (O]dt  (9)

Mg

/0 a(t)dt =

In Eqgs. (9) and (10), the interchange of integral and summation is justified since all
terms are nonnegative (this property is satisfied in the rest of paper)

(1-gq / G2(®)ar, (6) — 9., (B)]dt. (10)

x
/|

1

Now we obtain the Laplace transform of g,,(t). If we let g;(s) = [~ e~ *tg;(¢) (i =
1,2,3), then we have gw(t) = §1(t) + g2(t) + g3(t) (we use the tllde (~) to represent
the Laplace transform of the corresponding function in the rest of paper). Since
Gz(t) is Erlang distribution and its tail distribution has a form of summation, we
first obtain the following through the interchange of integral and summation :

gl(s) = /000 6~8tgz(t)é(t)dt

() [ [ [ G e
- (23) [ 5 e eaa]
- (sip)h [1—:: (s-:'—gﬂ)iDg)(s'*‘H)] (11)

where

D (z) = /0 ” tie-“g(t)dt
—=9(8)]s=z- (12)
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Next, applying the similar technique in Eq. (11) gives

where

()= 301 -0 /0 " e~1G 5(t) g (1)

Finally, we obtain

o0

(s + ) (13)

) (14)

g3t) =) (1-¢qfF /O e gz (t) / 97, (¥) — 97,1 ()] dydt

k=1

From Egs. (11), (13), and (15

o0

q)* /0 " l97. () — 9134, ®)] / e gz (t)dtdy

y

o h—1

S -0t [ lom ) - o) T EE ety
k=1 1=0
hh-1 iq ©© o
YL J;M) 2> -k / y'e Y (g1, (y) — 970, (v)] dy
1=0 9 k=1 Y
= + )z 1 % )
; $ - . (1= 9" aDP (s + ) = (DP (s + w) - aDP (s + )]
hh-1 ; .
S B (D0 4 ) - DP s+ )] (15
=0
) we obtain
h—

1(S+u) H )
G D (s + 1) +ZO SDP(s+u) (1)
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Note that d"/d"sDrE,f) (s+u)= (—1)"D¥+n)(s + ) . Hence, the n-th derivative of
gw (8) is given by

dr (h+n-—1)! uh psin 1(s—f—u) G)
s) = (-1)" 1- TR P (s +

Fsw ) = U g D+ )
Z LDZ(s + ) (17)
5=0 7

Then, the n-th moment of W is
d’n
EW"] = (-1)"=gw(s) |s=0 - (18)

3.2 Distribution of the Minimum of Two Random Variables

Before dealing with the system failure time directly, we digress in this section
to a useful theorem, which confirms the formula of gw (s) developed in Section 3.1
and also gives a basic formula for the Laplace transform of the effective system life
distribution that will be given in Section 3.3. Theorem 1 states that if at least one
of two random variables follows an Erlang distribution, the Laplace transform of the
distribution of the minimum between them can be represented in a functional form
of the derivatives of another one’s Laplace transform.

Theorem 1. Consider the two independent random variables B and C' where B
has an Eralng distribution with parameters o and § and C is arbitrary distributed
with pdf go(t) . Let A = min(B,C) and g4(t) be the pdf of A . Then, the Laplace
transform of g4(¢) is given by

10 = (725) (1- 5 500 ) + 58000 +5) 0

1=0

and the n-th moment is given by

_ n)! a—1-+n ;
B =S (1— 5 Zo¢ (ﬁ))

=0

!

a-1 ,; )
+ Z ﬂ_Dg+n)(lB)7 n= 1’ 27 3: U (20)
=0

where

DY () = (~1)" 5:5¢(5) [s=o - (21)
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proof. The pdf of A is represented as

ga(t) = gB(t)Gc(t) + Ga(t)ge(t) (22)

where gp(t) and G B(t) respectively represent the pdf and the tail distribution of B,
and G¢(t) is the tail of C. Thus, the Laplace transform of g4(t) is obtained by

Gals) = /0 " e [ga(H)Ge(t) + Ga(H)go(t)] d. (23)

Since B follows the Erlang distribution, applying the same technique as in (11) we
first obtain

oo —st A _ B ¢ _ (3+,3) (n)
[ g3<t>ac(t)dt—(-s-+—5) [1 z_; CHB pmrp| (1

where

DY () = (~1)" 5Go(s)lsms- (25)

With the interchange of integral and summation it follows that

/Ooo e Stgc(t)Gp(t)dt = / Z A tz —Btas

=0

= Z —'/ gc(y)tie"(”ﬂ)tdt
— 2. Jo
a—1 ,; )
=3 %Dg (s + B). (26)
i=0
Hence, putting Eqgs. (24) and (26) into Eq. (23), we obtain

gA(s)=( p ) [ i S+ﬂ +ﬂ]+zﬂ_D(')s+ﬁ) (27)

=0

Note that d"/d"s D(1 (s+8) = (-1 )"D(H")( + B) . Hence, by using the same
method in Egs. (17) and (18) we obtain the n-th moment of A as in Eq. (20)

Using Theorem 1 we can validate the formula of gy (s) presented in Section 3.1
in which a different approach is used to derive it. The following Corollary 1 gives a
more systemic approach to obtaining gw (s).

Corollary 1. Consider a renewal process for which the interarrival times Y; have a
distribution G(¢). Let N denote a stopping time of the process that is a geometric
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random variable with parameter ¢ and define T = Zfil Y;. Then, the Laplace
transform of A = min(B, T) where B follows an Erlang distribution with parameters
o and S is given by

ino) = (;25) [ Zl B pd(s + )

=

+ Z '3. DP(s+8)  (28)

DP(e) = (-1 L= 0 1a (o BOF s ), m=012 (29)
k=1

proof. Based on Theorem 1 Eq. (28) immediately holds from Theorem 1 when

DP(@) = (1'% 5 (s) s (30)

If we denote the pdf of T by gr(s), then

-/ et [2(1 - 9 1qg, <t)] dt

k=1

_ Yk-1 ooe—st t
(1-9" ¢ /0 g1, (t)dt
(1 - 9)* "4y, (t)dt. (31)

Since gy, (s) = [§(s)]¥, Eq. (29) holds.

Now let us return to Section 3.1. The arrival time of a minor shock which
makes the system fail can be represented as Zf\;l Y; where Y;’s are independent
and identically distributed with G(t) and N is a geometric random variables with
parameter ¢ . So, the arrival time of a critical shock, W, is simply the minimum
between the quantities Z and Zﬁ_l Y;. Note that in Corollary 1 T can be interpreted
as the arrival time of the minor shock which causes the system to fail. If we interpret
C as the arrival time of a major shock, then A corresponds to the arrival time of
the critical shock W. Hence we see that Corollary 1 gives the same result with Egs.
(14) and (16) in Section 3.1.

Corollary 1 can be extended to the case where N is a negative binomial random
variable with parameters r and p. Such case arises if we suppose that each minor
shock will partially degrade the system with probability p and the system will fail
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when a total of r such minor shocks are accumulated. In this case, Eq. (31) is
simply modified as

gr(s)=>_ (I: _ i)p’(l —p)* " gr, (s). (32)
k=1

3.3 Laplace Transform of System Failure Time Distribution

Now we derive the Laplace transform of the system failure time distribution,
gs(s). From Theorem 1,

. A m m-1 S+ A : i m-l by i
Gs(s) = (m) [1— CE DR+ 0|+ 2006 +x 63
i=0 i=0
where
nd" .
DY (@) = (~1)" 23w (3)ls=s (30)

m—1+n ; )
E[Sn]=(_m__:_1+_n)!i (1_ Z %—D&,)()\))

(m—-1)! An paare
m-1 )\z i )
1+n frasnd . 0
+ Z; S0 ), n=1,23, (35)
where
. h+4i-1 :
@y (BEI=1)1  ph B A+ u) G
D)= TG G T T D
h—1 Mj o
+> FD,fg“)(x + p). (36)

g=0 7"

Recall that m and A are shape and scale parameters in pdf of X, respectively, while
h and p are shape and scale parameters in pdf of Z, respectively. To compute E[S"]
in Eq. (35), we first need Dg,)()\)(i =0,--- ,m+n-1). In Eq. (36) we know that
ng)()\ +u)(j=0,--- ,h+1i—1) is needed to compute D&,)()\). From the definition
in Eq. (14), Drg ) (z) has a complex form and thus cannot be solved directly. So an
algorithmic approach is needed. In Section 4, a computation algorithm for Dgg )()
and thus E[S™] will be given through a recursive method.

Note that our system is simply interpreted as a series system having three com-
ponents whose life time distributions are F(t), Gz(t), and Gr(t), respectively. Thus,
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the system reliability is given by Gs(t) = F(t)Gz(t)Gr(t). In case that Y; follows
an Erlang distribution with shape parameter a and scale parameter b, the system
reliability is given as follows:

m—1 i h—1 i ) ka—-1 i
és(t) — (Z S{‘i%)e—)\t) (Z (’:f) e—-ltt) (Z(l _ q)k—lq Z (l;t‘) e—bt) . (37)
1=0 ) 1=0 ) k=1 =0 ’

It is interesting to comparé our system with a shock free system. If we focus on the
quantity E[S], the expected time to a system failure in a shock free system is just
E[X]. But, the E[S] in our system is given by from Eq. (35),

E[S] = %:(m X (’)(A) (38)

=0

1
)

>*|3

We also know that
E[S] = /0 ” F(t)Gw (t)dt
- Efz] - / ” F()Gw (t)dt. (39)
0

If we denote by X" the ezcess of X having its distribution F¢(¢) as the equilibrium
distribution of F(t) and its pdf f¢(¢), then the following is satisfied:

/Ooo15‘(t)GW(t)dt=/0 gw (u / F(t)dudt
=EX‘/0 gwu)/ -E[(—)t(d udt

= B[X] /0 gw (1) / Fe(t)dudt

~ E[X|P{X" > W)} / F—{TT)—I:(T)}

E[X|P{X" > W}. (40)

That is, E[S] = E[X] (1 — P{X" > W}). Hence, the system failure time in the ran-
dom shock environment is reduced by the proportion of P {X" > W} as compared
to that of a shock free system.

Now, let us illustrate a special case where X and Z are exponentially distributed
(m = h = 1) and G(t) is an exponential distribution with parameter . Then, E[S]
reduces to E[S] = (A + & + ¢v)~!, which corresponds to our intuition because T
follows an exponential distribution with parameter ¢vy.

Finally, if there is no information about how long the system has been in oper-
ation, the remaining effective system life at an arbitrary epoch when the system is
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still alive, denoted by R, is the excess of the effective system life and its moment is
obtained directly from that of the effective system life as follows:

E[5n+1]

Emﬂ:(n+nEwy

n=123,--- (41)

4. AN ALGORITHM FOR COMPUTATION OF MOMENTS

Note that for any arbitrary differentiable nonnegative functions a(s) and b(s), it
is satisfied that
J .
b =3 (])al 8500, n=0,1,2,:- (12)

=0

where the subscript (j) denotes the j-th derivative of the corresponding function.
Note that the Laplace transform of gz, (¢) is

ng (3) = [g(s)]k , n=123,-.. (43)

where §(s) is the Laplace transform of g(t). Then, (g7, (s)]”) can be computed in a
recursive manner as follows:

= (a1 = [§(s)]@ k=1
m (I _{ 5o (O BENOGn ()0 k=234, )

Hence, for a sufficiently large number K we can compute Dg)(s) in Eq. (14) as
follows:

K

DP(s) = (-1)" 3. (1 — 9)*qlgm, (). (45)
k=1

Note that the quantity (1—q)*¥~1g[gr, (s)]) converges to 0 for a given j as k increases.
Now, E[S™] in Eq. (35) can be computed in recursive manner with a proper
terminating condition using Egs. (44) and (45).

5. NUMERICAL EXAMPLES

In our numerical examples, we perform two main tests when evaluating the
system failure time : 1) the comparison of non—exponential distribution with expo-
nential distribution, 2) the effect of the variance of Y. In each case the mean values
of X, Y, and Z are adjusted to have the same value. We assume that Y; follows a
gamma distribution with parameters a and b (E[Y] = a/b). Note that when G(t) is
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the gamma distribution, it is satisfied that [§(s)]) = (=1)7b%a(a +1)---(a +j —
1)(s + b)7%77), which makes our algorithm more tractable. Table 1 and 2 represent
the results of test 1 and 2, respectively. Each result is given for the quantities E[S],
E[S?], and E[S3], respectively, in increasing values of ¢(0 < ¢ < 1). In particular,
the case that ¢ = 0 corresponds the situation where there exists only major shock
without no minor shock, while the case that ¢ = 1 represents such shock model
that the minor shock behaves same as major shock with a different arrival time
distribution.

From Table 1, we see that E[S] has a larger value in non-exponential model than
in exponential model at each given level of g. This shows that modeling the related
random variable as exponential distribution may underestimate the expected length
of the effective system life. Also, the difference of E[S] between them is not thought
to be negligible under the same mean values of X, Y, and Z, respectively. Table
2 shows that E[S] has a greater value in the model of large variance of Y than in
that of relatively small variance. Note that when ¢ = 0, E[S] has the same value
(0.9967) in each case. If we compare Case A in Table 1 with Case C in Table 2, then
the mean level of Y is greater in Case C than Case A. From the two tables we see
that Case C has a greater value of E[S] than Case C. This result also corresponds
to our intuition.

Table 1. E[S™] for non-exponential and exponential models

Non-exponential model (Case A) Exponential model (Case B)
m=4,A=4 m=1A=1
q h=8 p=2 h=1p=3
a=4,b=8 a=1b=2
E[S] E[57] E[s°] E[S] B[S E[s?]
0.0 0.9967 1.2363 1.8292 0.8000 1.2800 3.0720
0.1 09117 1.0540 1.4679 0.6897 0.9512 1.9681
0.2 0.8363 0.8995 1.1762 0.6061 0.7346 1.3357
0.3 0.7692 0.7684 0.9403 0.5405 0.5844 0.9476
0.4 0.7093 0.6568 0.7496 0.4878 0.4759 0.6964
0.5 0.6557 0.5617 0.5953 0.4444 0.3951 0.5267
0.6 0.6077 0.4804 0.4703 0.4082 0.3332 0.4080
0.7 0.5645 0.4109 0.3692 0.3774 0.2848 0.3224
0.8 0.5256 0.3513 0.2874 0.3509 0.2462 0.2592
0.9 0.4904 0.3002 0.2213 0.3279 0.2150 0.2115

1.0 0.4586 0.2562 0.1679 0.3077 0.1893 0.1748
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Table 2. Effect of variance of Y on E[S"]

Large variance of Y (Case C)

Small variance of Y (Case D)

m=4, A=4 m=4, A=4

q h=8 p=2 h=4,p=14

a=3,b=3 a=3b=3%
E[S] E[S?] E[S?%] E[S] E[S?] E[S%]
0.0 0.9967 1.2363 1.8292 0.9967 1.2363 1.8292
0.1 0.9908 1.2186 1.7844 0.9858 1.2088 1.7674
0.2 0.9849 1.2010 1.7400 0.9750 1.1818 1.7070
0.3 0.9791 1.1836 1.6960 0.9644 1.1551 1.6479
0.4 09733 1.1662 1.6525 0.9539 1.1290 1.5902
0.5 0.9675 1.1489 1.6093 0.9435 1.1032 1.5337
0.6 0.9617 1.1318 1.5666 0.9333 1.0779 1.4786
0.7 0.9560 1.1147 1.5242 0.9231 1.0530 1.4246
0.8 0.9503 1.0978 1.4823 0.9131 1.0286 1.3719
0.9 0.9446 1.0810 1.4407 0.9032 1.0045 1.3204
1.0 0.9389 1.0643 1.3995 0.8934 0.9808 1.2701

6. CONCLUSIONS

63

A non-exponential random shock model with two heterogeneous types of shocks
was considered. Based on the characterization of the inherent system life by an
Erlang distribution, the Laplace transform of the effective system life was derived
in a functional form of the Laplace transform of the interarrival time distribution
of minor shocks. The developed methodology can be easily extended to the hyper-
Erlang distribution of related time variables, which makes it possible to handle
more general cases. Also, the derived Laplace transform can facilitate its extension
to multi-shock models. Finally, it has application to a telecommunication area such

as cellular mobile systems exploiting queueing policy.
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