• 제목/요약/키워드: Distributed Wireless Systems

검색결과 265건 처리시간 0.032초

유.무선 인터넷 환경에서 XML 웹서비스를 위한 통합 XML Parser 구현 (Implementation of the XML Parser for Integrated XML Web Service in Wired and Wireless Internet Environment)

  • 권두위;도경훈
    • 한국정보통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.493-500
    • /
    • 2010
  • XML 웹서비스는 인터넷을 이용한 오픈 네트워크를 통해 단일 또는 다수의 비즈니스 업체 간의 기존 컴퓨터 시스템 프로그램을 결합시키는 표준화된 소프트웨어 기술로서 기업의 수익증대와 비용절감의 효과를 얻을 수 있을 것으로 기대된다. 특히 모바일 매쉬업(Mashup)을 위해서는 XML 웹서비스의 처리가 필수적이다. 본 논문에서는 WIPI 환경과 웹서비스 상에서 사용할 수 있는 XML 파서를 구현하였다. 그리고 HTTP 통신이 WIPI상에서 가능하도록 하여 XML 웹서비스의 서비스 개발에 적용함으로써 모바일 환경에서의 XML 웹서비스 인터페이스를 구현하였다. 유무선 환경에서 동시 사용가능하게 적용한 것은 어떠한 환경에서도 적용 가능한 파서임을 나타낸다. 또한 기존의 파서들과의 성능비교를 통해 제안한 파서가 속도면에서 뛰어난 점을 보여준다. 이에 대한 실제 응용으로서 WIPI용 Java언어를 기반으로 인터넷 서점에 적용하였다.

레일레이 페이딩 채널의 무선 네트워크에서 ¾ STBC를 사용한 협력신호 구조에 관한 연구 (A Cooperative Signaling Structure using the ¾ - rate STBC in Wireless Networks with Rayleigh Fading Channels)

  • ;공형윤;최정호
    • 정보처리학회논문지C
    • /
    • 제13C권7호
    • /
    • pp.865-872
    • /
    • 2006
  • 최근 협력통신은 안테나의 물리적인 배치 없이 공간 다중화를 얻을 수 있는 효과적인 방법으로 많은 주목을 받고 있다. 따라서 협력적인 위치를 가진 다중 안테나 시스템에서 잘 알려진 시공간 블록 코드(STBC, Space Time Block Code)는 분산환경 하의 단일 안테나 사용자들에게도 이용될 수 있다. 본 논문에서는 3/4 시공간블록 코드를 사용한 협력적인 신호 구조를 제안하고, 수학적으로 증명한 전송 전력 제한과 네트워크 기하학을 이용하여 이론상의 BER (Bit Error Ratio) 표현을 유도한다. 다양한 환경에서의 시뮬레이션과 잘 증명된 수학적인 결과는 파트너가 적절한 위치에 있을 때, 직접 전송보다 매우 성능이 우수한 협력 통신을 증명하였다.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • 제14권4호
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.

Embedded RF Test Circuits: RF Power Detectors, RF Power Control Circuits, Directional Couplers, and 77-GHz Six-Port Reflectometer

  • Eisenstadt, William R.;Hur, Byul
    • Journal of information and communication convergence engineering
    • /
    • 제11권1호
    • /
    • pp.56-61
    • /
    • 2013
  • Modern integrated circuits (ICs) are becoming an integrated parts of analog, digital, and radio frequency (RF) circuits. Testing these RF circuits on a chip is an important task, not only for fabrication quality control but also for tuning RF circuit elements to fit multi-standard wireless systems. In this paper, RF test circuits suitable for embedded testing are introduced: RF power detectors, power control circuits, directional couplers, and six-port reflectometers. Various types of embedded RF power detectors are reviewed. The conventional approach and our approach for the RF power control circuits are compared. Also, embedded tunable active directional couplers are presented. Then, six-port reflectometers for embedded RF testing are introduced including a 77-GHz six-port reflectometer circuit in a 130 nm process. This circuit demonstrates successful calibrated reflection coefficient simulation results for 37 well distributed samples in a Smith chart. The details including the theory, calibration, circuit design techniques, and simulations of the 77-GHz six-port reflectometer are presented in this paper.

Performance Analysis of a Novel Distributed C-ARQ Scheme for IEEE 802.11 Wireless Networks

  • Wang, Fan;Li, Suoping;Dou, Zufang;Hai, Shexiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3447-3469
    • /
    • 2019
  • It is well-known that the cooperative communication and error control technology can improve the network performance, but most existing cooperative MAC protocols have not focused on how to cope with the contention process caused by cooperation and how to reduce the bad influence of channel packet error rate on the system performance. Inspired by this, this paper first modifies and improves the basic rules of the IEEE 802.11 Medium Access Control (MAC) protocol to optimize the contention among the multi-relay in a cooperative ARQ scheme. Secondly, a hybrid ARQ protocol with soft combining is adopted to make full use of the effective information in the error data packet and hence improve the ability of the receiver to decode the data packet correctly. The closed expressions of network performance including throughput and average packet transmission delay in a saturated network are then analyzed and derived by establishing a dedicated two-dimensional Markov model and solving its steady-state distribution. Finally, the performance evaluation and superiority of the proposed protocol are validated in different representative study cases through MATLAB simulations.

A Reinforcement Learning Framework for Autonomous Cell Activation and Customized Energy-Efficient Resource Allocation in C-RANs

  • Sun, Guolin;Boateng, Gordon Owusu;Huang, Hu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.3821-3841
    • /
    • 2019
  • Cloud radio access networks (C-RANs) have been regarded in recent times as a promising concept in future 5G technologies where all DSP processors are moved into a central base band unit (BBU) pool in the cloud, and distributed remote radio heads (RRHs) compress and forward received radio signals from mobile users to the BBUs through radio links. In such dynamic environment, automatic decision-making approaches, such as artificial intelligence based deep reinforcement learning (DRL), become imperative in designing new solutions. In this paper, we propose a generic framework of autonomous cell activation and customized physical resource allocation schemes for energy consumption and QoS optimization in wireless networks. We formulate the problem as fractional power control with bandwidth adaptation and full power control and bandwidth allocation models and set up a Q-learning model to satisfy the QoS requirements of users and to achieve low energy consumption with the minimum number of active RRHs under varying traffic demand and network densities. Extensive simulations are conducted to show the effectiveness of our proposed solution compared to existing schemes.

Reducing Cybersecurity Risks in Cloud Computing Using A Distributed Key Mechanism

  • Altowaijri, Saleh M.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.1-10
    • /
    • 2021
  • The Internet of things (IoT) is the main advancement in data processing and communication technologies. In IoT, intelligent devices play an exciting role in wireless communication. Although, sensor nodes are low-cost devices for communication and data gathering. However, sensor nodes are more vulnerable to different security threats because these nodes have continuous access to the internet. Therefore, the multiparty security credential-based key generation mechanism provides effective security against several attacks. The key generation-based methods are implemented at sensor nodes, edge nodes, and also at server nodes for secure communication. The main challenging issue in a collaborative key generation scheme is the extensive multiplication. When the number of parties increased the multiplications are more complex. Thus, the computational cost of batch key and multiparty key-based schemes is high. This paper presents a Secure Multipart Key Distribution scheme (SMKD) that provides secure communication among the nodes by generating a multiparty secure key for communication. In this paper, we provide node authentication and session key generation mechanism among mobile nodes, head nodes, and trusted servers. We analyzed the achievements of the SMKD scheme against SPPDA, PPDAS, and PFDA schemes. Thus, the simulation environment is established by employing an NS 2. Simulation results prove that the performance of SMKD is better in terms of communication cost, computational cost, and energy consumption.

A3C 기반의 강화학습을 사용한 DASH 시스템 (A DASH System Using the A3C-based Deep Reinforcement Learning)

  • 최민제;임경식
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.297-307
    • /
    • 2022
  • The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.

사물인터넷에서 시각 정보 관리 체계 (A Framework for Time Awareness System in the Internet of Things)

  • 황소영
    • 한국정보통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.1069-1073
    • /
    • 2016
  • 사물인터넷 (Internet of Things: IoT)은 기존의 유선통신을 기반으로 한 인터넷이나 모바일 인터넷보다 진화된 단계로 인터넷에 연결된 기기가 사람의 개입 없이 상호간에 알아서 정보를 주고받아 처리한다. 이를 구현하기 위한 기술 요소로는 유형의 사물과 주위 환경으로부터 정보를 얻는 센싱 기술, 사물이 인터넷에 연결되도록 지원하는 유무선 통신 및 네트워크 인프라 기술, 각종 서비스 분야와 형태에 적합하게 정보를 가공하고 처리하거나 기술을 융합하는 서비스 인터페이스 기술이 핵심이며 이러한 기술을 실현하는데 있어 시각 정보 및 시각 동기 기술은 필수적이라 할 수 있다. 본 논문에서는 컴퓨터 시스템과 기존 인터넷에서 시각 유지 기법을 분석하고 사물인터넷에서 시각 정보 관리에 필요한 요소 기술과 시각 관리 체계를 제시한다.

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.