• 제목/요약/키워드: Distributed Wireless Systems

검색결과 265건 처리시간 0.026초

WiMedia Distributed MAC 통신 시스템에서 QoS 성능 향상을 위한 릴레이 통신 프로토콜 (Relay Transmission Protocol for QoS Enhancement in WiMedia Distributed MAC/WUSB Systems)

  • 허경
    • 한국정보통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.692-700
    • /
    • 2012
  • 본 논문에서는 UWB 기술 기반 WiMedia 무선 USB Distributed Medium Access Control (D-MAC) 프로토콜의 공평하고 분산적인 SoQ기반 Distributed Reservation Protocol (DRP) 타임슬롯 자원 할당 방법의 성능을 분석하고, DRP 예약 충돌을 회피하기 위해 릴레이 통신 기술을 적용한 SoQ 릴레이 전송 프로토콜을 제안한다. 본 논문에서 제안하는 SoQ 릴레이 전송 프로토콜은 Satisfaction of QoS (SoQ) 알고리즘을 각 단말 디바이스에서 분산적으로 실행하고, 충돌대상 디바이스에게 예약된 QoS 자원을 유지할 수 있도록 Direct Link 뿐만 아니라 릴레이 노드를 경유하여 또 다른 Indirect Link 링크를 예약할 수 있는 자원 예약 프로토콜을 제안한다.

Global Optimization for Energy Efficient Resource Management by Game Based Distributed Learning in Internet of Things

  • Ju, ChunHua;Shao, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.3771-3788
    • /
    • 2015
  • This paper studies the distributed energy efficient resource management in the Internet of Things (IoT). Wireless communication networks support the IoT without limitation of distance and location, which significantly impels its development. We study the communication channel and energy management in the wireless communication network supported IoT to improve the ability of connection, communication, share and collaboration, by using the game theory and distributed learning algorithm. First, we formulate an energy efficient neighbor collaborative game model and prove that the proposed game is an exact potential game. Second, we design a distributed energy efficient channel selection learning algorithm to obtain the global optimum in a distributed manner. We prove that the proposed algorithm will asymptotically converge to the global optimum with geometric speed. Finally, we make the simulations to verify the theoretic analysis and the performance of proposed algorithm.

무선 근거리 통신망 환경을 위한 다단계 데이터베이스 시스템 (Multi-tier Database System for Wireless LAN Environment)

  • 박제호
    • 반도체디스플레이기술학회지
    • /
    • 제3권4호
    • /
    • pp.13-17
    • /
    • 2004
  • As the usage of wireless LAN becomes common in working environment, the number of database systems that support both wired and wireless users increases rapidly. The characteristics of wireless LAN that its speed is slow relatively comparing to wired network and the users in its environment connects to different communication points as they moves creates another challenge to be resolved in database systems. In the environment of hybrid communication systems, wired and wireless for voluminous data amount and a number of users, the two layer architecture of the conventional client-server database systems has limitation in the system performance. This is due to that server is the only point of data service in client-server database systems. In this paper, we discuss a new extended database system architecture that data services are distributed among servers and clients based on user database access patterns in order to improve system performance. We analyze the expected system performance by using simulation technique and prove the practical utilization of the system by demonstrating experimental results.

  • PDF

무선 기술의 사용이 분산 집단의사결정에 미치는 영향 연구 (The Effects of Wireless Technology on Distributed Group Decision-Making Practices)

  • 권오병;김태경;김충련
    • Asia pacific journal of information systems
    • /
    • 제12권2호
    • /
    • pp.119-135
    • /
    • 2002
  • Those making decisions are no longer located in the same workplace. Wireless technology appears promising as a method to promote group performance in circumstances dependent on time, but not member proximity. However, the success of wireless technology in group decision-making situations has not yet been proven. This paper seeks to learn whether wireless technology affects the performance of group decision-making tasks that should be resolved urgently and/or sources of idea are disconnected with on-line network.

A Collaborative and Predictive Localization Algorithm for Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3480-3500
    • /
    • 2017
  • Accurate locating for the mobile target remains a challenge in various applications of wireless sensor networks (WSNs). Unfortunately, most of the typical localization algorithms perform well only in the WSN with densely distributed sensor nodes. The non-localizable problem is prone to happening when a target moves into the WSN with sparsely distributed sensor nodes. To solve this problem, we propose a collaborative and predictive localization algorithm (CPLA). The Gaussian mixture model (GMM) is introduced to predict the posterior trajectory for a mobile target by training its prior trajectory. In addition, the collaborative and predictive schemes are designed to solve the non-localizable problems in the two-anchor nodes locating, one-anchor node locating and non-anchor node locating situations. Simulation results prove that the CPLA exhibits higher localization accuracy than other tested predictive localization algorithms either in the WSN with sparsely distributed sensor nodes or in the WSN with densely distributed sensor nodes.

A Distributed Multiple Spectrum Pricing Scheme for Optimality Support in Multiaccess Systems

  • Choi, Yong-Hoon;Sohaib, Khan;Kim, Hoon;Chang, Kap-Seok;Kang, Sung-Yeol;Han, Young-Nam
    • Journal of Communications and Networks
    • /
    • 제11권4호
    • /
    • pp.368-374
    • /
    • 2009
  • This paper focuses on a distributed multiple spectrum pricing scheme to maximize system capacity in next generation multiaccess systems, where multimode user equipments (MUEs) can connect simultaneously to multiple base stations (BSs) with multiple radio access technologies (RATs). The multi-price based scheme provides a distributed decision making for an optimal solution where radio resource allocations are determined by each MUE, unlike most centralized mechanisms where BS controls the whole radio resource. By the proposed optimal solution, MUEs can decide their share of spectrum bands and power allocation according to the spectrum price of each RAT, and at the same time the multiaccess system can achieve maximized total throughput. Numerical analysis shows that the proposed scheme achieves the maximal capacity by distributed resource allocation for the multiaccess system.

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

UWB 기반 Distributed MAC 시스템을 위한 SoQ 기반 협력 통신 프로토콜 설계 (Design of SoQ-based Cooperative Communication Protocol for UWB-based Distributed MAC/WUSB Systems)

  • 허경
    • 한국멀티미디어학회논문지
    • /
    • 제15권3호
    • /
    • pp.345-355
    • /
    • 2012
  • 본 논문에서는 UWB 기술 기반 WiMedia Distributed Medium Access Control (D-MAC) 무선 USB 표준 프로토콜에 적용할 수 있는 Satisfaction of QoS (SoQ) 기반 협력 통신 프로토콜을 제안한다. 이를 위해 UWB 링크 전송 속도와 QoS 척도에 따른 릴레이 노드 선정 알고리즘을 제안한다. 본 논문에서 제안하는 SoQ 기반 협력 통신 프로토콜은 분산적인 D-MAC 무선 USB 표준 기술과 호환성을 갖고, 각 디바이스에서 독립적으로 실행되는 SoQ 기반 Relay Node Selection (RNS) 기준에 따라 실행된다.

A Distributed Power Optimization Method for CDMA Cellular Mobile Systems Using an Adaptive Search Scheme

  • Lee, Young-Dae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1982-1985
    • /
    • 2003
  • Future cellular networks will mainly be driven by, high quality channels, high band with utilization, low power consumption and efficient network management. For a given channel allocation, the capacity and quality of communication of cellular radio systems using CDMA(Code Division Multiple Access) can be increased by using a transmitter power control scheme to combat the near-far problem. Centralized power control schemes or distributed ones to maximize the minimum signal-to-interference in each user of CDMA wireless network have been investigated. This paper has proposed a distributed power control algorithm, which employs an adaptive search scheme, in order to solve quickly the linear systems of equations for power update in CDMA cellular radio systems. The simulation results show that the proposed scheme has faster convergence rate than the typical bang-bang type of distributed power control algorithm, which has been much used as a reference algorithm in IS-95A and W-CDMA communication network.

  • PDF

Soft Fault Detection Using an Improved Mechanism in Wireless Sensor Networks

  • Montazeri, Mojtaba;Kiani, Rasoul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.4774-4796
    • /
    • 2018
  • Wireless sensor networks are composed of a large number of inexpensive and tiny sensors used in different areas including military, industry, agriculture, space, and environment. Fault tolerance, which is considered a challenging task in these networks, is defined as the ability of the system to offer an appropriate level of functionality in the event of failures. The present study proposed an intelligent throughput descent and distributed energy-efficient mechanism in order to improve fault tolerance of the system against soft and permanent faults. This mechanism includes determining the intelligent neighborhood radius threshold, the intelligent neighborhood nodes number threshold, customizing the base paper algorithm for distributed systems, redefining the base paper scenarios for failure detection procedure to predict network behavior when running into soft and permanent faults, and some cases have been described for handling failure exception procedures. The experimental results from simulation indicate that the proposed mechanism was able to improve network throughput, fault detection accuracy, reliability, and network lifetime with respect to the base paper.