• 제목/요약/키워드: Distributed Spectrum Sensing

검색결과 37건 처리시간 0.03초

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • 제14권2호
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

Social Incentives for Cooperative Spectrum Sensing in Distributed Cognitive Radio Networks

  • Feng, Jingyu;Lu, Guangyue;Min, Xiangcen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.355-370
    • /
    • 2014
  • Cooperative spectrum sensing has been considered as a promising approach to improve the sensing performance in distributed cognitive radio networks. However, there may exist some selfish secondary users (SUs) who are unwilling to cooperate. The presence of selfish SUs could cause catastrophic damage to the performance of cooperative spectrum sensing. Following the social perspective, we propose a Social Tie-based Incentive Scheme (STIS) to deal with the selfish problem for cooperative spectrum sensing in distributed cognitive radio networks. This scheme inspires SUs to contribute sensing information for the SUs who have social tie but not others, and such willingness varies with the strength of social tie value. The evaluation of each SU's social tie derives from its contribution for others. Finally, simulation results validate the effectiveness of the proposed scheme.

인지 라디오 네트워크의 안전한 분산 스펙트럼 센싱을 위한 트랜잭션 서명기법 (Transaction Signing-based Authentication Scheme for Secure Distributed Spectrum Sensing in Cognitive Radio Networks)

  • 김태경
    • 디지털산업정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.75-83
    • /
    • 2011
  • Cognitive radio (CR) technology is to maximize the spectrum utilization by allocating the unused spectrums to the unlicensed users. This technology enables the sharing of channels among secondary (unlicensed) and primary (licensed) users on a non-interference basis after sensing the vacant channel and as a result, it is possible to harness wireless frequency more efficiently. To enhance the accuracy of sensing, RDSS was suggested. It is a fusion mechanism based on the reputation of sensing nodes and WSPRT (weighted sequential probability ratio test). However, in RDSS, the execution number of WSPRT could increase according to the order of inputted sensing values, and the fast defense against the forged values is difficult. In this paper, we propose a transaction signing-based authentication scheme for secure distributed spectrum sensing to response the forged values. The validity of proposed scheme is provided by BAN logic.

무선 인지 Ad-hoc 네트워크에서 센싱 zone 기반의 분산적 공정 센싱 방법 (Distributed Fair Sensing Scheme based on Sensing Zone in Cognitive Radio Ad-hoc Networks)

  • 최재각;유상조
    • 한국통신학회논문지
    • /
    • 제35권3A호
    • /
    • pp.296-305
    • /
    • 2010
  • CR 네트워크에서 기존의 단일 노드를 기반으로 하는 센싱 방법은 PU 보호를 위한 센싱 요구조건을 만족시키기 위해 주기적이고 빈번한 센싱을 요구한다. 그러나 각각의 노드는 동작 채널을 결정하기 위해 넓은 대역의 스펙트럼을 관찰해야 하기 때문에, 이 같은 단일 노드에 의한 지속적인 센싱 동작은 센싱 오버헤드를 크게 증가시키게 되어, 확보한 동작 채널에서의 정상적인 송수신 (normal operation) 기회를 감소시키는 것은 물론, 센싱 오버헤드로 인해 노드의 수명이 짧아지는 등의 많은 문제점을 야기할 수 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 동일한 센싱 결과가 예측되는 센싱 zone 기반의 분산적 공정 센싱 방법을 제안하고, 제안된 센싱 동작이 PU 시스템을 보호하기 위한 센싱 요구조건을 만족하도록 하는 프레임 구조를 설계하였다. 또한 이렇게 설계된 프레임 구조를 바탕으로 시뮬레이션 실험을 수행하였으며, 그 결과 제안된 방법이 PU 시스템 보호를 위한 요구조건을 만족시키면서 동시에 기존의 개별적 센싱 방법에 비해 센싱 오버헤드를 크게 감소시킬 수 있음을 보였다.

A Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권3호
    • /
    • pp.289-304
    • /
    • 2010
  • This paper proposes a novel scheme for cooperative spectrum sensing on distributed cognitive radio networks. A fuzzy logic rule - based inference system is proposed to estimate the presence possibility of the licensed user's signal based on the observed energy at each cognitive radio terminal. The estimated results are aggregated to make the final sensing decision at the fusion center. Simulation results show that significant improvement of the spectrum sensing accuracy is achieved by our schemes.

Using Subspace Pursuit Algorithm to Improve Performance of the Distributed Compressive Wide-Band Spectrum Sensing

  • Le, Thanh Tan;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • 제11권4호
    • /
    • pp.250-256
    • /
    • 2011
  • This paper applies a compressed algorithm to improve the spectrum sensing performance of cognitive radio technology. At the fusion center, the recovery error in the analog to information converter (AIC) when reconstructing the transmit signal from the received time-discrete signal causes degradation of the detection performance. Therefore, we propose a subspace pursuit (SP) algorithm to reduce the recovery error and thereby enhance the detection performance. In this study, we employ a wide-band, low SNR, distributed compressed sensing regime to analyze and evaluate the proposed approach. Simulations are provided to demonstrate the performance of the proposed algorithm.

Broadband Spectrum Sensing of Distributed Modulated Wideband Converter Based on Markov Random Field

  • Li, Zhi;Zhu, Jiawei;Xu, Ziyong;Hua, Wei
    • ETRI Journal
    • /
    • 제40권2호
    • /
    • pp.237-245
    • /
    • 2018
  • The Distributed Modulated Wideband Converter (DMWC) is a networking system developed from the Modulated Wideband Converter, which converts all sampling channels into sensing nodes with number variables to implement signal undersampling. When the number of sparse subbands changes, the number of nodes can be adjusted flexibly to improve the reconstruction rate. Owing to the different attenuations of distributed nodes in different locations, it is worthwhile to find out how to select the optimal sensing node as the sampling channel. This paper proposes the spectrum sensing of DMWC based on a Markov random field (MRF) to select the ideal node, which is compared to the image edge segmentation. The attenuation of the candidate nodes is estimated based on the attenuation of the neighboring nodes that have participated in the DMWC system. Theoretical analysis and numerical simulations show that neighboring attenuation plays an important role in determining the node selection, and selecting the node using MRF can avoid serious transmission attenuation. Furthermore, DMWC can greatly improve recovery performance by using a Markov random field compared with random selection.

PERIODIC SENSING AND GREEDY ACCESS POLICY USING CHANNEL MODELS WITH GENERALLY DISTRIBUTED ON AND OFF PERIODS IN COGNITIVE NETWORKS

  • Lee, Yutae
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.129-136
    • /
    • 2014
  • One of the fundamental issues in the design of dynamic spectrum access policy is the modeling of the dynamic behavior of channel occupancy by primary users. Under a Markovian modeling of channel occupancy, a periodic sensing and greedy access policy is known as one of the simple and practical dynamic spectrum access policies in cognitive radio networks. In this paper, the primary occupancy of each channel is modeled as a discrete-time alternating renewal process with generally distributed on- and off-periods. A periodic sensing and greedy access policy is constructed based on the general channel occupancy model. Simulation results show that the proposed policy has better throughput than the policies using channel models with exponentially distributed on- or off-periods.

Performance of DF Protocol for Distributed Cooperative Spectrum Sensing in Cognitive Radio

  • 추명예;배상준;곽경섭
    • 한국통신학회논문지
    • /
    • 제34권2A호
    • /
    • pp.124-131
    • /
    • 2009
  • Cognitive radio has been proposed to mitigate the spectrum scarcity problem by allowing the secondary users to access the under-utilized frequency bands and opportunistically transmit. Spectrum sensing, as a key technology in cognitive radio, is required to reliably detect the presence of primary users to avoid the harmful interference. However, it would be very hard to reliably detect the presence of primary users due to the channel fading, shadowing. In this paper, we proposed a distributed cooperative spectrum sensing scheme based on conventional DF (decode-and-forward) cooperative diversity protocol. We fist consider the cooperation between two secondary users to illustrate that cooperation among secondary users can obviously increase the detection performance. We then compare the performance of DF based scheme with another conventional AF (amplify-and-forward) protocol based scheme. And it is found that the proposed scheme based on DF has a better detection performance than the one based on AF. After that, we extend the number of cooperative secondary users, and demonstrate that increasing the cooperation number can significantly improve the detection performance.