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Using Subspace Pursuit Algorithm to Improve Performance of the 

Distributed Compressive Wide-Band Spectrum Sensing

Le Thanh Tan․Hyung-Yun Kong

Abstract 

This paper applies a compressed algorithm to improve the spectrum sensing performance of cognitive radio techno-
logy. At the fusion center, the recovery error in the analog to information converter (AIC) when reconstructing the 
transmit signal from the received time-discrete signal causes degradation of the detection performance. Therefore, we 
propose a subspace pursuit (SP) algorithm to reduce the recovery error and thereby enhance the detection performance. 
In this study, we employ a wide-band, low SNR, distributed compressed sensing regime to analyze and evaluate the 
proposed approach. Simulations are provided to demonstrate the performance of the proposed algorithm.

Key words: Wide-Band Spectrum Sensing, Subspace Pursuit Algorithm, Cognitive Radio, Compressed Sensing, 
Power Spectrum Density Estimate.

                          
Manuscript received July 19, 2011 ; revised October 25, 2011. (ID No. 20110719-022J)

School of Electrical Engineering, University of Ulsan, Ulsan, Korea. 

Corresponding Author : Hyung-Yun Kong (e-mail : hkong@mail.ulsan.ac.kr) 

Ⅰ. Introduction

Fueled by the dramatically increasing demand for high 

quality of services, numerous novel wireless technologies 

have been invented and are leading to a crowding of 

spectrum allocation. This, in turn, raises the critical 

problem that insufficient spectrum space is available for 

new kinds of application. However, most of the licensed 

bands are sporadically located and under-utilized, rather 

than in actual shortage. In fact, less than 5 % of the total 

licensed spectrum may be in use [1]. The Federal Co-

mmunications Commission (FCC) has therefore proposed 

the idea of an open licensed frequency band, which un-

licensed users would be allowed to occupy opportu-

nistically. In addition, the IEEE 802.22 workgroup has 

built the standards of WRAN based on cognitive radio 

(CR) techniques [2]. CR is now considered as the most 

competitive candidate for a secondary system that could 

co-exist with the primary one.

Based on the ability to provide high data rates and 

high quality of services, wide-band applications are re-

ceiving increasingly more attention recently. However, 

wide-band applications in CR encounter considerable cha-

llenges in spectrum sensing. On the one hand, wide-band 

sensing applications usually employ a large number of 

RF devices to deal with the wide frequency range. On 

the other hand, a trade-off exists between high-speed 

processing units and detection performance due to the 

sensing time constraints and insufficient samples.

In order to provide a reliable but low complexity 

model, many studies have exploited a compressed sen-

sing (CS) framework for wide-band sensing. Initially, the 

CS theory, which was innovated by Donoho [3], allowed 

a highly sparse signal to be reconstructed from a small 

number of measurements. In other words, this method is 

able to compress the sparse signal at the sub-Nyquist rate 

during sampling in the first stage. The reconstruction 

stage requires state-of-the-art algorithms to solve the 

convex optimization problem; for example, the basic 

pursuit (BP) or orthogonal matching pursuit (OMP) [3], 

[4]. Zhi et al. [5] next presented a single wide-band CR 

model that uses CS based spectrum sensing schemes; 

however, the input signal was still sampled by an ana-

log-to-digital convertor (ADC) operating at a Nyquist 

rate. The authors in [6] improved compressive wide-band 

spectrum sensing (CWSS) systems for single CR by em-

ploying an analog-to-information converter (AIC) [7]～

[9], which operates at a sub-Nyquist rate due to direct 

application of CS to the analog signal. This group [10] 

further extended their early work to multiple CRs in 

order to design a distributed CWSS (DCWSS) based on 

[11]. These studies simply applied wide-band spectrum 

sensing to CS; hence, improvement of the model is still 

required for greater robustness of the performance of 

spectrum sensing.

In this work, we adopt CWSS and DCWSS schemes 

for single and multiple CRs, respectively. In addition, we 

propose the use of the subspace pursuit (SP) method [12] 

in the reconstruction stage. The novel SP method pro-

vides the robustness to cope with inaccurate measure-
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ment (due to noisy environment) as well as efficiency 

and low complexity, owing to its restricted isometry pro-

perty (RIP) [13]. In an undesirable condition of low SNR 

licensed signals, we also propose a DCWSS based SP 

(DCWSSSP) method that jointly reconstructs the sparse 

signal from multi-CR received signals. Finally, we com-

pare the performance of the DCWSSSP algorithm with 

those of the schemes using compressive sampling mat-

ching pursuit (Cosamp) [12] and OMP [6], [10] to illu-

strate the accuracy of the proposed method.

The rest of this paper is organized as follows: section 

Ⅱ presents the relevant concepts and terminology of the 

CS reconstruction, while a compressive spectrum-sensing 

scheme for single CR is presented in Section Ⅲ. An 

extension to the collaborative compressed spectrum sens-

ing for multiple CR is shown in Section Ⅳ, while Sec-

tion V demonstrates the corroborating simulation results 

to illustrate the effectiveness of the novel approach in 

detecting the spectrum holes. Finally, concluding rema-

rks are given in Section Ⅳ.  

Ⅱ. Preliminaries 

2-1 Signal Model

We assume that the frequency range of the signal 
consists of max I channels with equal bandwidth. The 

spectrum-sensing model presented here includes a fusion 
center that collects data from J CR nodes. An AIC is 

used to sample the received signal at each CR node. 
Finally, the determination of which bands are occupied 

by licensed users (LUs) at the fusion center.

2-2 Compressed Sensing of Analog Signals and the 

Restricted Isometric Property x(t), [0, ]t TÎ  

We present an analog signal x(t), in a discrete format 

as a finite weighted sum of the basic elements as [7]～
[9]:

 

1

( ) ( )
N

i i
i

x t s ty
=

=å
(1)

  

 

where x is an 1N ´  vector x= Ψs , which is represented 

in the sparse form of an 1N ´  vector s with K N<<  

non-zero elements si via the N N´  matrix Ψ . CS de-

monstrates that x can be recovered using M N<<  
measurements [13]. The measurements y are expressed 
as:

 

y = Φx+ n = ΦΨs + n (2)  
 

Several choices are available for the distribution of Φ, 

such as the Gaussian, Bernoulli, or Fourier ensembles.

The reconstruction stage is performed by solving the 

following standard approach to an objective function as 

according to:
 

1s
min . .s y = ΦΨss t (3)  

 

The problem (3) can be efficiently solved using BP or 

some types of constructive algorithms such as matching 

pursuit (MP) and OMP [3], [4].

In order to ensure the accuracy of each reconstruction 

algorithm, the projected matrix Φ must satisfy the RIP 

[14], which is presented as follows:

Definition 1 (Truncation): Let M N´ÎRF M N´ÎRF
M N´Î RF and NÎx R . The matrix TF  with { }1, ,T NÌ L

has an i-th column ( )i TÎ  in F  and  Tx  is calculated 

through TF .
Definition 2 (RIP): The matrix M N´ÎRF  satisfies the 

RIP with ( ), KK s  for , 0 1KK M s£ £ £ , if
 

( ) ( )
2 2 2

2 2 2
1 1q q qK T Ks s- £ £ +F (4)  

 

for all { }1, ,T NÌ L and for all T
qÎR , and ( )1 1K T T T T Ks l l s- £ £ £ +

( ) ( ) ( )min max1 1H H
K T T T T Ks l l s- £ £ £ +F F F F , where ( )min

H
T Tl F F

and ( )max
H

T Tl F F represent the minimal and maximal 

eigenvalues of H
T TF F , respectively.

Ⅲ. Compressive Spectrum Sensing at a 

Single CR [6], [10]

In this section, we summarize the procedures for  the 

receiving and reconstruction at each CR node. 

Fig. 1 shows that the analog input x(t) is [ ]x
T

k kN ix += , 

and the output of AIC is y
T

k kM jy +
é ù= ë û where 0,1,2...k = , 

0, , 1i N= +K , and 0, , 1j M= +K . The AIC is modeled 

by the M N´  projected matrix AF  as
 

k A ky = Φ x (5)  
 

Using some mathematical operations [6], [10], we ha- 

ve
 

y xr = Φr (6)  
 

where [ ]0 ( )xr
T

xr i= and 0 ( )yr
T

yr ié ù= ë û , 1, , 1i N N= - + +K

1, , 1i N N= - + +K  are 2 1N ´  and 2 1M ´ autocorrelation vectors, res-

pectively.

Fig. 1. CS acquisition at an individual CR sensing receiver.
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After acquiring the output vector of the autocorrelation 

operation, we use the wavelet-based approach as pre-

sented in [15], [16] to detect the band edge locations. 

For an experiment when N M<<  in [5], the edge 

spectrum sz  can be determination from measurements 

and the relation between sz  and xr is:
 

x sr = Gz (7)  
 

where sz is the discrete 2 1N ´ vector and ( )
1

FW
-

=G G . 

The 2 2N N´  matrices G , W, and F represent a first 

derivative operation, Wavelet, and Fourier transforms, 

respectively.

Combining (6) and (7), the optimization problem for 

an edge spectrum reconstruction is given by:
 

1
min . .s y sz r = ΦGzs t (8)  

 

To solve this problem, we use the CWSS based SP 

(CWSSSP) that is presented in the next section. The 

spectrum estimate can now be evaluated as a cumulative 

sum of elements in vector ( )s s
ˆ ˆz =

T
z ié ùë û , 1, , 2i N= K . 

Therefore, the estimated values of PSD are given by
 

( ) ( )x s
1

ˆ ˆ=
n

k

S n z k
=
å

(9)
  

Ⅳ. Collaborative Compressed Spectrum Sensing

In Fig. 2, ( )jx t  is the input of AIC at the j-th CR 

node. The output of AIC is processed to give the 2 1M ´

autocorrelation vector ,yr j . The fusion center collects the 

autocorrelation vectors and applies the DCWSSSP app-

roach to reconstruct the J received PSD ,
ˆ

x jS ; 1, ,j J= K  

and then obtains an average PSD. Finally, the center 

determines whether the frequency ranges are occupied, 

based on the average PSD.

4-1 Overview of the SP Approach [17]

The SP algorithm [17] is less complicated but it re-

sults in a comparable recovery performance to LP te-

Fig. 2. DCWSS for multiple CR nodes. 

Fig. 3. Subspace pursuit algorithm applied to reconstruc-
tion.

 

chniques.

First, the matrix A = ΦG  can be expressed in a row 

of its columns as:
 

[ ]1 2 2A a a a N= L (10)

The next step is solving the problem (8) by using an 

SP technique. We set the truncation for subspace AS  of 

the matrix 2 2M N´  A as in Definition 1, Section III 

and ASspan( )  is represented to the space span of AS .  

In addition, the matrix 2 2M N´  A also satisfies the 

RIP, as in (4), Definition 2, Section III, by replacing M 

by 2M, N by 2N, each TF  by A S , and each F  by A .

The l1-linear program approach can successfully 

reconstruct a K-sparse signal if the RIP must be satisfied 

with constants Ks , 2Ks  and 3Ks , which have a con-

dition 2 3 1K K Ks s s+ + <  [18]. However, in [14], the 

authors improved the above condition to 2 2 1Ks < - . 

For any given vector
2M

y Îr R , the projection of ry  onto 

the subspace ASspan( )  is denoted by ,r y p  and can be 
computed as:

 

( ) †
, , :r r A A A ry p y S S S ypro j= =

(11)
 

Note that ( )
1†A A A AH H

S S S S

-

= is the pseudo-inverse of 

the matrix AS ,where subscript 
H
 denotes the conjugate 

transposition. Corresponding to the projection vector, the 

projection residue vector ,ry r  is defined as
 

( ), ,, :r r A r ry r y S y y presid= = - (12)
 

Fig. 3 illustrates the schematic diagram of iterations in 

the SP algorithm [17], demonstrating that the subspace is 

updated during each iteration; i.e., elements can be added 

to or deleted from the subspace.

The following subsection represents the algorithm to 

solve the above problem.

4-2 The Jointly Recovery SP Algorithm
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The advantage of the SP algorithm comparing with the 

OMP method is the way to generate lS , that is the 

estimate of the correct support set S .

We describe the procedure of this algorithm as 

follows:

1. Input:

․A 2 2M N´  matrix A.

․A 2M J´  input matrix ,1 ,2 ,y y yR r r r Jé ù= ë ûL  recei-

ved from J CR sensing receivers.

2. Output: The 2N J´  estimated signal s s s sZ z z z=

,1 , 2 ,s s s sZ z z z Jé ù= ë ûL , the average of j PSD es-

timate vectors ( )
xŜ J

.

3. Procedure:

1) Initialization:

․For each j-th CR (j=1, …, J), we have

0

,

0 0 0
,1 ,2 ,

j

y j

j j j K

K indices with respect tothelargest

elements in
S

u u u

ì üï ï
= í ý
ï ïî þ

é ù= ë û

H

 

A r

L

and then calculate

{ }0 0

0 0
1 2

j

o
K

S average S

u u u

=

é ù= ë ûL
,

Where ,
1

1 J
o o
k k j

jJ
u u

=

= å .

․The projection residue vector for the j-th CR is

  ( )0

0
ˆ, , ,r r Ar j y j S

r e s i d= .

2) Iteration: The following steps will be performed at 

every l th-  iteration.

․For each j-th CR (j=1, …, J), we evaluate

{ }1 1

1 1 1
1 2

늿l l
j

l l l
K

S average S

u u u

- -

- - -

=

é ù= ë ûL

1

H 1
,

ˆ
A r

l
j l

r j

K indices respect to the largest

elements in
S -

-

ì üï ï
= í ý
ï ïî þ ,

1ˆ l
jS -

(13)
 

where  
 

1 1
,

1

1
, 1, 2, ,

J
l l
k k j

j

k K
J

u u- -

=

= =å K ,
(14)

 

and then 1 1ˆl l lS S S- -=% U .

․For each j-th CR, we set the projection coefficients: 
†

, , ,z A rls p j y jS
= % .

․
,

l
j

s j

K indiceswith respect tothelargest

elementsin
S

ì ü
= í ý
î þ

 

z
; And we cal-

culate lS  using (13), (14) and replacing (l—1) with l.

․The residue vector of the projection for the j-th CR 

is ( ), , ,r r A l

l
r j y j S

resid= .

3) Termination test: The SP iteration is terminated 

when 1
, ,2 2

m in m inr rl l
r j r j

-> , 1,2, ,j J= K . Then 

let 1l lS S -=  and quit the iteration. If the limit is 

not reached, increase l and return to the iteration.

4) Store the results:

The estimated signal ẑ s, j satisfies { }1, ,
ẑ 0ls, j N T-

=
L  and

†
,ẑ A rl ls , j y jS S

= . The j-th PSD estimate vector is 

( ) ( )x , s ,
1

ˆ ˆS =
n

j j
k

n z k
=
å .

The average of J PSD estimate vectors is        
 

(15)
 

4-3 Performances:

4-3-1 MSE Performance

The MSE of PSD from our approach is calculated as: 
 

( )

( ) ( )

( )

2

2

2

2

ˆ

MSE = E
x x

x

S S

S

J J

J

J

ì ü-ï ï
í ý
ï ï
î þ (16)

 

where ( )ˆ
xS J

and ( )
xS J

 denote the average PSD output and 

the PSD, respectively for in case of signals sampled at 

the Nyquist rate.

4-3-2 Probability of Detection

To compute the detection probability Pd, we apply the 

energy detection method, where the test static is cal-

culated from the averaged PSD estimate ( )ˆ
xS J [19]. As in 

[10], we identify the static test as:
 

( )

( )

2

,
1 1 1 1

1
= ( )

IL J H
J

I h j
i I L j h

E X i
JH = - + = =

å åå
(17)

 

where L is the total samples from each channel, I maxI=

1,2, ,I maxI= K , H is the total number of blocks, X repre-

sents the Fourier transform from x.
Using the Neyman-Pearson hypothesis test, we deter-

mine the decision threshold m [19]:
 

( )

( )

,

1
J

f

JH
JH

P
JH

mæ ö
Gç ÷
è ø= -
G (18)

, ,
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where (.,.)G is upper incomplete gamma function [20], 

Sec. (8.350)], Γ(.) is the gamma function [20], Sec. 

(13.10)]. Hence, the probability of detection ( )J

dP  is eva-

luated as
 

( ) ( ){ }
1

1
Pr

aI
J J

d I
I I

P E
a

m
=

= >å
(19)

 

where , 1, ,iI i a= K  denote the indices of a active cha-

nnels.

Ⅴ. Simulation Results

In this section, the simulation results are shown to 
evaluate the proposed approach. In this simulation mo-
del, the frequency band ranges from —38.05 to 38.05 

MHz, which is the same as that described in [21], and 
the number of channels is maxI=10 with 7.61 MHz 
bandwidth. The OFDM frame length TF includes 68 
symbols, and each of these super-frames contains four 
frames. The number of carriers per symbol is C=1,705 
with a duration TS, composed of a useful part TU and a 

guard interval ∆ (set to 0 in this simulation). 
For this scheme, the over-sampling factor is 02, and 

only 50 % of the channels are active. The SNRs of the 

active channels are assumed to be in the range [—10 dB, 

—8 dB] and the AGWN variance is 
2 1ns = . The smoo-

thing signal scheme is performed using a Gaussian 

wavelet. The length of input signal is  2N=512 and the 
compressed rate is varying from 5 % to 100 %, and 

H=160, and ΦA  has a zero-mean Gaussian ensemble wi-

th variance 1/M. The number of PSD samples of each 
channel is L=25.

Fig. 4 illustrates the MSE performances for the SP, 
OMP, iteratively reweighted least squares with regula-
rization (IRLS) [21] and Cosamp algorithms [22]. The 
results show that better performance is achieved for SP 

than for these other approaches, while all versions take 

Table 1. Parameters for the simulations.

Parameter 2 k mode

Elementary period T 7 / 64 sm

Number of carriers C 1,705

Value of carrier number minC 0

Value of carrier number maxC 1,704

Duration of symbol part UT
2, 048

224

T

sm

´

Carrier spacing 1/ UT 4,464 Hz

Spacing between carriers minC  and 

( )max 1 / UC C T-
7.61 MHz

Fig. 4. MSE for SP, IRLS, OMP and Cosamp approaches 
versus compression rate M/N for various numbers of 

collaborating CRs (SNR=[—10 dB, —8 dB]).

 

the same time to reach convergence. The OMP algorithm 

has the worst performance in the conditions used for this 

simulation, with a low sampling factor corresponding to 

low sparsity and the noisy environment. The SP algo-

rithm is robust in this case because it adds the good basis 

candidates and it also removes the bad candidates. This 

figure also shows the signal recovery quality, where 

MSE decreases when the compression rate M/N increa-

ses. However, to complement this degradation, we take 

advantage of the multi-CR scheme, where MSE can be 

significantly reduced. Therefore, we reduce the cost of 

high speed by using the CS method and we also improve 

the MSE by exploiting the multiple CRs.

The detection performance is shown in Fig. 5, which 

Fig. 5. Probabilities of detection Pd for SP and Cosamp ap-

proaches versus compression rate M/N for various num-
bers of collaborating CRs (SNR=[—10 dB, —8 dB]).
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depicts the probability of detection ( )J

dP vs. the compre-

ssion ratio M/N when the number of CRs is J=1 and 5 

at a given ( )J

fP of 0.01. This figure demonstrates that the 

detection probability was high at a low compression ratio 

M/N. The use of multiple CRs significantly improves the 

detection probability. In addition, the probability of 

detection is improved by the SP approach compared with 

the IRLS and Cosamp algorithms. 

Ⅵ. Conclusion

In this paper, we used the DCWSS and SP algorithm 

to reduce the recovery error in the reconstruction stage in 

the CRN. A new iterative algorithm, termed the DCW-

SSSP approach, is exploited for joint compressive spec-

trum sensing. 
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