• 제목/요약/키워드: Distributed Renewable Energy Generation

검색결과 148건 처리시간 0.024초

배전시스템 운영계획을 위한 신재생에너지원 발전량 예측 방법 (Renewable Power Generation Forecasting Method for Distribution System: A Review)

  • 조진태;김홍주;류호성;조영표
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.21-29
    • /
    • 2022
  • Power generated from renewable energy has continuously increased recently. As the distributed generation begins to interconnect in the distribution system, an accurate generation forecasting has become important in efficient distribution planning. This paper explained method and current state of distributed power generation forecasting models. This paper presented selecting input and output variables for the forecasting model. In addition, this paper analyzed input variables and forecasting models that can use as mid-to long-term distributed power generation forecasting.

Single-Phase Multilevel PWM Inverter Based on H-bridge and its Harmonics Analysis

  • Choi, Woo-Seok;Nam, Hae-Kon;Park, Sung-Jun
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1227-1234
    • /
    • 2015
  • The efficient electric power demand management in electric power supply industry is currently being changed by distributed generation. Meanwhile, small-scale distributed generation systems using renewable energy are being constructed worldwide. Several small-scale renewable distributed generation systems, which can supply electricity to the grid at peak load of the grid as per policy such as demand response programs, could help in the stability of the electric power demand management. In this case, the power quality of the small-scale renewable distributed generation system is more significant. Low prices of power semiconductors and multilevel inverters with high power quality have been recently investigated. However, the conventional multilevel inverter topology is unsuitable for the small-scale renewable distributed generation system, because the number of devices of such topology increases with increasing output voltage level. In this paper, a single-phase multilevel inverter based on H-bridge, with DC_Link divided by bi-directional switches, is proposed. The proposed topology has almost half the number of devices of the conventional multilevel inverter topology when these inverters have the same output voltage level. Double Fourier series solution is mainly used when comparing PWM output harmonic components of various inverter topologies. Harmonic components of the proposed multilevel inverter, which have been analyzed by double Fourier series, are compared with those of the conventional multilevel inverter. An inverter prototype is then developed to verify the validity of the theoretical analysis.

Performance Prediction & Analysis of MGT Co-generation System

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Kim, Jae-Hoon
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.15-22
    • /
    • 2006
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new market penetration using the distributed generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection standards. KEPCO, a government company in Korea, has performed the project to identify and evaluate the performance of Micro Gas Turbine(MGT) technologies focused on 30, 60kW-class grid-connected optimization and combined Heat & Power performance. This paper describes the results for the mechanical, electrical, and environmental tests of MGT on actual grid-connection under Korean regulations. As one of the achievements, the simulation model of Exhaust-gas Absorption Chiller was developed, so that it will be able to analyze or propose new distributed generation system using MGT. In addition, KEPCO carried out the field testing of the MGT Cogeneration system at the R&D Center Building, KEPCO. The field test was conducted in order to respond to a wide variety of needs for heat recovery and utilization. The suggested method and experience for the evaluation of the distributed generation will be used for the introduction of other distributed generation technologies into the grid in the future.

  • PDF

Smart Grid-The next Generation Electricity Grid with Power Flow Optimization and High Power Quality

  • Hu, Jiefeng;Zhu, Jianguo;Platt, Glenn
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.425-433
    • /
    • 2012
  • As the demand for electric power increases rapidly and the amount of fossil fuels decreases year by year, making use of renewable resources seem very necessary. However, due to the discontinuous nature of renewable resources and the hierarchical topology of existing grids, power quality and grid stability will deteriorate as more and more distributed generations (DGs) are connected to the grids. It is a good idea to combine local utilization, local consumption, energy storage and DGs to form a grid-friendly micro grid, these micro grids can then assembled into an intelligent power system - the smart Grid. It can optimize power flow and integrate power generation and consumption effectively. Most importantly, the power quality and grid stability can be improved greatly. This paper depicts how the smart grid addresses the current issues of a power system. It also figures out the key technologies and expectations of the smart grid.

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.

Deve lopment of Simulator System for Microgrids with Renewable Energy Sources

  • Jeon, Jin-Hong;Kim, Seul-Ki;Cho, Chang-Hee;Ahn, Jong-Bo;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.409-413
    • /
    • 2006
  • This paper deals with the design and testing of a simulator system for microgrids with distributed generations. This system is composed of a Real Time Digital Simulator (RTDS) and a power amplifier. The RTDS parts are operated for real time simulation for the microgrid model and the distributed generation source model. The power amplifiers are operated fur amplification of the RTDS's simulated output signal, which is a node voltage of the microgrid and distributed generation source. In this paper, we represent an RTDS system design, specification and test results of a power amplifier and simulation results of a PV (Photovoltaic) system and wind turbine system. The proposed system is applicable for development and performance testing of a PCS (Power Conversion System) for renewable energy sources.

바이오 디젤의 발전용 연료화 타당성 및 추진전략 (Feasibility Evaluation & Strategy of Replacement of Power Generation Fuel by Using Bio-diesel)

  • 허광범;박정극;임상규;김성철
    • 신재생에너지
    • /
    • 제5권1호
    • /
    • pp.32-39
    • /
    • 2009
  • Availability of reliable and affordable energy supply is a prerequisite for economic growth. Renewables are the third largest contributor to global electricity production after coal and natural gas and account for a share of 18%. Power generating capacity from renewables has increased to around 900GW by the year 2007. Today biodiesel fuels have been in commercial use in many countries and recently the world-wide biodiesel market has experienced considerable growth, which is partly due to various tax concession programs and other financial incentives. In Korea, biodiesel has already been used for transportation fuel, but not used for power generation fuel yet Korean government has a strategy for renewable energy propagation, especially the goal of power generation amount by renewable energy is 3% of total power production by 2012. This paper focuses on the feasibility study for adaptability and strategy of using biodiesel as power generation fuel. The study also has the plan to replace the fuel of thermal power plant, gas turbine and distributed power system. As the increase of biodiesel fuel, I look forward to environment-friendly power generation and the strategy of Renewable Portfolio Standards(RPS).

  • PDF

Improvement of Variable Renewable Energy Penetration of Stand-Alone Microgrid Hosting Capacity by Using Energy-Storage-System Based on Power Sensitivity

  • CHOI, DongHee
    • 한국정보기술학회 영문논문지
    • /
    • 제10권2호
    • /
    • pp.91-101
    • /
    • 2020
  • Recently, the demand for high penetration of variable renewable energy (VRE) penetration in a power system is increased. In consequence, distribution systems including microgrids confront the increased installation of VRE-based distributed generation. Despite of the high demand of VRE-based distributed generation in a distribution system, the installation of photovoltaic (PV) system in a distribution system has been restricted by various problems. In other words, the hosting capacity for high VRE penetration in a distribution system is limited. This paper analyzes the improvements of hosting capacity VRE penetration of stand-alone microgrid (SAMG) with energy storage system (ESS) by considering virtual-slack (VS) control based on power sensitivity. With the pre-defined power sensitivity, the ESS operates as virtual slack in the SAMG by controlling its bus voltage and phase angle indirectly. Therefore, the ESS enables the increase of VRE penetration in the SAMG. The proposed VS control is realized by analyzing the ESS as a virtual slack in power flow analysis based on power sensitivity. Then its validity is demonstrated with the case study on the SAMG in South Korea with practical data.

분산 재생에너지의 효율적 활용을 위한 가상발전소(VPP) 플랫폼 개발에 관한 연구 (A Development of VPP Platform for the Efficient Utilization of Distributed Renewable Energy Resources)

  • 조영혁;백승엽;최원용;정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권2호
    • /
    • pp.95-114
    • /
    • 2018
  • Purpose The recent concern over environmental problems such as greenhouse gas emission and fine dust contributes increasing interest in renewable energies. However the intrinsic characteristics of renewable energies, intermittent and stochastic generation, might cause serious problems to the stability and controllability of power grid. Therefore countermeasures such as virtual power plant (VPP) must be prepared in advance of the spread of uncontrollable distributed renewable energy resources to be one of major energy sources. Design/methodology/approach This study deals with the design concept of the VPP platform. we proposed as a technology solution for achieving the stability of power grid by guaranteeing a single power profile combining multiple distributed power sources with ICT. The core characteristics of VPP should be able to participate in the grid operation by responding to operation instructions from the system operator, KPX, as well as the wholesale electricity market. Findings Therefore this study includes energy storage device(ESS) as a controllable component as well as renewable energy resources such as photovoltaic and wind power generation. Based on this configuration, we discussed core element technologies of VPP and protype design of VPP solution platform according to system requirements. In the proposed solution platform, UX design for the integrated control center and brokerage system were included as well as ancillary service function to respond to KPX's operation instruction with utilizing the capability of ESS. In addition, a simulator was suggested to verify the VPP operations.

바이오 디젤의 발전용 연료화 타당성 평가 (Feasibility Evaluation & Strategy of Replacement of Power Generation Fuel by Using Bio-diesel)

  • 허광범;박정극;임상규;이정빈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.806-812
    • /
    • 2009
  • Availability of reliable and affordable energy supply is a prerequisite for economic growth. Renewables are the third largest contributor to global electricity production after coal and natural gas and account for a share of 18%. Power generating capacity from renewables has increased to around 900GW by the year 2007. Today biodiesel fuels have been in commercial use in many countries and recently the world-wide biodiesel market has experienced considerable growth, which is partly due to various tax concession programs and other financial incentives. In Korea, biodiesel has already been used for transportation fuel, but not used for power generation fuel yet. Korean government has a strategy for renewable energy propagation, especially the goal of power generation amount by renewable energy is 3% of total power production by 2012. This paper focuses on the feasibility study for adaptability and strategy of using biodiesel as power generation fuel. The study also has the plan to replace the fuel of thermal power plant, gas turbine and distributed power system. As the increase of biodiesel fuel, I look forward to environment-friendly power generation and the strategy of Renewable Portfolio Standards(RPS).

  • PDF