• Title/Summary/Keyword: Distortion Estimation

Search Result 345, Processing Time 0.034 seconds

Entropy-Constrained Temporal Decomposition (엔트로피 제한 조건을 갖는 시간축 분할)

  • Lee Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.262-270
    • /
    • 2005
  • In this paper, a new temporal decomposition method is proposed. where not oniy distortion but also entropy are involved in segmentation. The interpolation functions and the target feature vectors are determined by a dynamic Programing technique. where both distortion and entropy are simultaneously minimized. The interpolation functions are built by using a training speech corpus. An iterative method. where segmentation and estimation are iteratively performed. finds the locally optimum Points in the sense of minimizing both distortion and entropy. Simulation results -3how that in terms of both distortion and entropy. the Proposed temporal decomposition method Produced superior results to the conventional split vector-quantization method which is widely employed in the current speech coding methods. According to the results from the subjective listening test, the Proposed method reveals superior Performance in terms of qualify. comparing to the Previous vector quantization method.

AMSEA: Advanced Multi-level Successive Elimination Algorithms for Motion Estimation (움직임 추정을 위한 개선된 다단계 연속 제거 알고리즘)

  • Jung, Soo-Mok;Park, Myong-Soon
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.98-113
    • /
    • 2002
  • In this paper, we present advanced algorithms to reduce the computations of block matching algorithms for motion estimation in video coding. Advanced multi-level successive elimination algorithms(AMSEA) are based on the Multi-level successive elimination algorithm(MSEA)[1]. The first algorithm is that when we calculate the sum of absolute difference (SAD) between the sum norms of sub-blocks in MSEA, we use the partial distortion elimination technique. By using the first algorithm, we can reduce the computations of MSEA further. In the second algorithm, we calculate SAD adaptively from large value to small value according to the absolute difference values between pixels of blocks. By using the second algorithm, the partial distortion elimination in SAD calculation can occur early. So, the computations of MSEA can be reduced. In the third algorithm, we can estimate the elimination level of MSEA. Accordingly, the computations of the MSEA related to the level lower than the estimated level can be reduced. The fourth algorithm is a very fast block matching algorithm with nearly 100% motion estimation accuracy. Experimental results show that AMSEA are very efficient algorithms for the estimation of motion vectors.

Structure damage estimation due to tunnel excavation based on indoor model test

  • Nam, Kyoungmin;Kim, Jungjoo;Kwak, Dongyoup;Rehman, Hafeezur;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Population concentration in urban areas has led traffic management a central issue. To mitigate traffic congestions, the government has planned to construct large-cross-section tunnels deep underground. This study focuses on estimating the damage caused to frame structures owing to tunnel excavation. When constructing a tunnel network deep underground, it is necessary to divide the main tunnel and connect the divergence tunnel to the ground surface. Ground settlement is caused by excavation of the adjacent divergence tunnel. Therefore, predicting ground settlement using diverse variables is necessary before performing damage estimation. We used the volume loss and cover-tunnel diameter ratio as the variables in this study. Applying the ground settlement values to the settlement induction device, we measured the extent of damage to frame structures due to displacement at specific points. The vertical and horizontal displacements that occur at these points were measured using preattached LVDT (Linear variable differential transformer), and the lateral strain and angular distortion were calculated using these displacements. The lateral strain and angular distortion are key parameters for structural damage estimation. A damage assessment chart comprises the "Negligible", "Very Slight Damage", "Slight Damage", "Moderate to Severe Damage", and "Severe to Very Severe Damage" categories was developed. This table was applied to steel frame and concrete frame structures for comparison.

HMM-Based Bandwidth Extension Using Baum-Welch Re-Estimation Algorithm (Baum-Welch 학습법을 이용한 HMM 기반 대역폭 확장법)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.259-268
    • /
    • 2007
  • This paper contributes to an improvement of the statistical bandwidth extension(BWE) system based on Hidden Markov Model(HMM). First, the existing HMM training method for BWE, which is suggested originally by Jax, is analyzed in comparison with the general Baum-Welch training method. Next, based on this analysis, a new HMM-based BWE method is suggested which adopts the Baum-Welch re-estimation algorithm instead of the Jax's to train HMM model. Conclusionally speaking, the Baum-Welch re-estimation algorithm is a generalized form of the Jax's training method. It is flexible and adaptive in modeling the statistical characteristic of training data. Therefore, it generates a better model to the training data, which results in an enhanced BWE system. According to experimental results, the new method performs much better than the Jax's BWE systemin all cases. Under the given test conditions, the RMS log spectral distortion(LSD) scores were improved ranged from 0.31dB to 0.8dB, and 0.52dB in average.

A Fast Multilevel Successive Elimination Algorithm (빠른 다단계 연속 제거 알고리즘)

  • Soo-Mok Jung
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.10
    • /
    • pp.761-767
    • /
    • 2003
  • In this paper, A Fast Multi-level Successive Elimination Algorithm (FMSEA) is presented for block matching motion estimation in video coding. Motion estimation accuracy of FMSEA is equal to that of Multilevel Successive Elimination Algorithm(MSEA). FMSEA can reduce the computations for motion estimation of MSEA by using partial distortion elimination technique. The efficiency of the proposed algorithm was verified by experimental results.

  • PDF

An Efficient Multi-level Successive Elimination Algorithm using the Locality in Block (동영상의 블록내 지역성을 이용하는 효율적인 다단계 연속 제거알고리즘)

  • Jung, Soo Mok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.179-187
    • /
    • 2009
  • In this paper, an efficient multi-level successive elimination algorithm using the locality in block was proposed for motion estimation. If SAD(sum of absolute difference) is calculated from large absolute difference values to small absolute difference values, SAD is increased rapidly. So, partial distortion elimination in SAD calculation can be done very early. Hence, the computations of SAD calculation can be reduced. In this paper, an efficient algorithm to calculate SAD from large absolute difference values to small absolute difference values by using the locality in block. Experimental results show that the proposed algorithm is an efficient algorithm with 100% motion estimation accuracy for the motion estimation of motion vectors.

Fast Affine Motion Estimation Method for Versatile Video Coding (다목적 비디오 부호화를 위한 고속 어파인 움직임 예측 방법)

  • Jung, Seong-Won;Jun, Dong-San
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.707-714
    • /
    • 2022
  • Versatile Video Coding (VVC) is the most recent video coding standard, which had been developed by Joint Video Expert Team (JVET). It can improve significant coding performance compared to the previous standard, namely High Efficiency Video Coding (HEVC). Although VVC can achieve the powerful coding performance, it requires the tremendous computational complexity of VVC encoder. Especially, affine motion compensation (AMC) was adopted the block-based 4-parameter or 6-parameter affine prediction to overcome the limit of translational motion model while VVC require the cost of higher encoding complexity. In this paper, we proposed the early termination of AMC that determines whether the affine motion estimation for AMC is performed or not. Experimental results showed that the proposed method reduced the encoding complexity of affine motion estimation (AME) up to 16% compared to the VVC Test Model 17 (VTM17).

A Method for Improvement of Coding Efficiency in Scalability Extension of H.264/AVC (H.264/AVC Scalability Extension의 부호화 효율 향상 기법)

  • Kang, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.21-26
    • /
    • 2010
  • This paper proposed an efficient algorithm to reduce the amount of calculation for Scalability Extension which takes a great deal of the operational time in H.264/AVC. This algorithm decides a search range according to the direction of predicted motion vector, and then performs an adaptive spiral search for the candidates with JM(Joint Model) FME(Fast Motion Estimation) which employs the rate-distortion optimization(RDO) method. Experimental results by applying the proposed method to various video sequences showed that the process time was decreased up to 80% comparing to the previous prediction methods. The degradation of video Quality was only from 0.05dB to 0.19dB and the compression ratio decreased as small as 0.58% in average. Therefore, we are sure that the proposed method is an efficient method for the fast inter prediction.

Efficient Mode Decision Algorithm Based on Spatial, Temporal, and Inter-layer Rate-Distortion Correlation Coefficients for Scalable Video Coding

  • Wang, Po-Chun;Li, Gwo-Long;Huang, Shu-Fen;Chen, Mei-Juan;Lin, Shih-Chien
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.577-587
    • /
    • 2010
  • The layered coding structure of scalable video coding (SVC) with adaptive inter-layer prediction causes noticeable computational complexity increments when compared to existing video coding standards. To lighten the computational complexity of SVC, we present a fast algorithm to speed up the inter-mode decision process. The proposed algorithm terminates inter-mode decision early in the enhancement layers by estimating the rate-distortion (RD) cost from the macroblocks of the base layer and the enhancement layer in temporal, spatial, and inter-layer directions. Moreover, a search range decision algorithm is also proposed in this paper to further increase the motion estimation speed by using the motion vector information from temporal, spatial, or inter-layer domains. Simulation results show that the proposed algorithm can determine the best mode and provide more efficient total coding time saving with very slight RD performance degradation for spatial and quality scalabilities.