AMSEA: Advanced Multi-level Successive Elimination Algorithms for Motion Estimation

움직임 추정을 위한 개선된 다단계 연속 제거 알고리즘

  • Published : 2002.02.01

Abstract

In this paper, we present advanced algorithms to reduce the computations of block matching algorithms for motion estimation in video coding. Advanced multi-level successive elimination algorithms(AMSEA) are based on the Multi-level successive elimination algorithm(MSEA)[1]. The first algorithm is that when we calculate the sum of absolute difference (SAD) between the sum norms of sub-blocks in MSEA, we use the partial distortion elimination technique. By using the first algorithm, we can reduce the computations of MSEA further. In the second algorithm, we calculate SAD adaptively from large value to small value according to the absolute difference values between pixels of blocks. By using the second algorithm, the partial distortion elimination in SAD calculation can occur early. So, the computations of MSEA can be reduced. In the third algorithm, we can estimate the elimination level of MSEA. Accordingly, the computations of the MSEA related to the level lower than the estimated level can be reduced. The fourth algorithm is a very fast block matching algorithm with nearly 100% motion estimation accuracy. Experimental results show that AMSEA are very efficient algorithms for the estimation of motion vectors.

본 논문에서는 블록 정합 알고리즘(BMA: block matching algorithm)인 다단계 연속 제거 알고리즘(MSEA: multi-level successive elimination algorithm)[1]의 연산량을 줄이기 위하여 네 가지 방안을 제안하였다. 첫 번째 제안 방안은 MSEA에서 서브 블록(sub block)의 합 놈(sum norm)에 대한 절대 오차의 합(SAD: sum of absolute difference)을 계산할 때 부분 왜곡 제거(PDE: partial distortion elimination) 기법을 적용하여 연산량을 감소시킨 알고리즘이다. 두 번째 제안 방안인 적응 SAD 계산 알고리즘은 SAD 계산 시 절대 오차가 큰 값에서부터 작은 값의 순으로 SAD를 계산하면 PDE가 빨리 발생하게 되어 연산량을 줄일 수 있는 성질을 이용한 알고리즘이다. 세 번째 제안 방안인 제거 레벨 추정 알고리즘은 탐색점의 제거 레벨을 추정하고 추정된 레벨에서부터 상위 레벨로 다단계 연속 제거 과정을 수행함으로 추정된 제거레벨보다 낮은 레벨들과 연관된 연산량을 감소시킨 알고리즘이다. 제안된 첫 번째, 두 번째, 세 번째 방안은 움직임 추정의 정확도가 전역 탐색 알고리즘(FSA: full search algorithm) 및 MSEA와 동일하면서 MSEA의 연산량을 효과적으로 감소시킨 알고리즘들이다. 네 번째 제안 방안인 나선형 다이아몬드 그물 탐색 알고리즘은 움직임 추정의 정확도가 거의 100%이면서 움직임 추정에 필요한 연산량을 획기적으로 감소시킨 고속 블록 정합 알고리즘이다. 위의 네 가지 제안 방안에 대한 성능을 평가하기 위하여 실험을 수행하였으며 실험에서 제안 방안들의 효율성을 확인하였다.

Keywords

References

  1. X. Q. Gao, C. J. Duanmu and C. R. Zou, 'A multilevel successive elimination algorithm for block matching motion estimation.' IEEE Trans. Image Processing, Vol. 9, No.3, pp. 501-504, Mar. 2000 https://doi.org/10.1109/83.826786
  2. W. Li and E. Sajari, 'Successive eljroination algorithm for motion estimation,' IEEE Trans. Image Processing, vol. 4. No.1, pp. 105-107, Jan. 1995 https://doi.org/10.1109/83.350809
  3. H. S. wang, R. M. Mersereau, 'Fast algorithms for the estimation of motion vectors,' IEEE Trans. Image Processing, vol. 8, No.3, pp. 435-438, Mar. 1999 https://doi.org/10.1109/83.748899
  4. H. G. Musmann, P. Pirsh, and H. J. Gilbert, 'Advances in picture coding,' Proc. IEEE, vol. 73, pp. 523-548, Apr. 1985 https://doi.org/10.1109/PROC.1985.13183
  5. J. R. Jain and A. K. Jain, 'Displacement measurement and its application in interframe image coding,' IEEE Trans. Commun., vol. COM-29, no. 2, pp. 1799-1808, Dec. 1981 https://doi.org/10.1109/TCOM.1981.1094950
  6. A. N. Netravali, J. D. Robbins, 'Motion compensated television coding: Part I,' Bell Syst. Tech. J., vol. 58, pp. 631-670, Mar. 1979
  7. CCITT Standard H.261, 'Video codec for audiovisual services at px64 kbit/s,' ITU. 1990
  8. ITU-T DRAFT Standard H.263, 'Video coding for narrow telecommunication channel at (below) 64kbit/s,' ITU, Apr. 1995
  9. ISO-IEC JTC1/SC2/WG11, 'Preliminary text for MPEG video coding standard,' ISO, Aug. 1990
  10. A. Puri, H.-M. Hang and D. L. Schilling, 'An efficient block matching algorithm for motion compensated coding,' Proc. Int. Conf. Acoust, Speech, Signal Processing, 1987, pp. 25.4.1-25.4.4
  11. M. Ghanbari, 'The cross-search algorithm for motion estimation,' IEEE Trans. Commun., vol. 38, no. 7, pp. 950-953, July 1990 https://doi.org/10.1109/26.57512
  12. T. Koga, K. Iinuma, Y. Iijima, and T. Ishiguro, 'Motion compensated interframe coding for video conferencing,' Proc. Nat. Telecommunications Conf., Nov. 1981, pp. G.5.3.1-G.5.3.5
  13. M. J. Chen, L. G. Chen, and T. D. Chiueh, 'One-dimensional full search motion estimation algorithm for video coding,' IEEE Trans. Circuits Syst. Video Technol., vol. 4, pp. 504-509, Oct. 1994 https://doi.org/10.1109/76.322998
  14. H. M. Jong, L. G. Chen, and T. D. Chiueh, 'Accuracy improvement and cost reduction of 3-step scarch block matching algorithm for video coding,' IEEE Trans. Circuits Syst. Video Technol., vol. 4, pp. 88-91, Feb. 1994 https://doi.org/10.1109/76.276175
  15. R. Li, B. Zeng, and M. L. Liou, 'A new three-step search algorithm for block motion cstimation,' IEEE Trans. Circuits Syst. Video Technol.., vol.4, pp. 438-442, Aug. 1994 https://doi.org/10.1109/76.313138
  16. B. Liu and A. Zaccarin, 'New fast algorithms for the estimation of block motion vectors,' IEEE Trans. Circuits Syst. Video Technol, vol. 3, no. 2, pp. 148-157, Apr. 1993 https://doi.org/10.1109/76.212720
  17. K. H. K. Chow and M. L. Liou, 'Genetic motion search algorithm for video compression,' IEEE Trans. Circuits Syst. Video Technol., vol. 3, pp. 440-446, Dec. 1993 https://doi.org/10.1109/76.260203
  18. S. M. Jung, S. C. Shin, H. K. Baik, and M. S. park, 'Advanced multi-level successive elimination algorithms for motion estimation in video coding,' Lecture Notes in Computer Science 1983, Proc. of International Conference of Intelligent Data Engineering and Automated Learning, 431-442 December, 2000, Hong Kong
  19. S. M. Jung, S. C. Shin, H. K. Baik, and M. S. Park, 'Nobel successive elimination algorithms for the estimational of motion vectors,' IEEE International Symposium on Multimedia Software Engineering, pp. 332-335 December, 2000, Taiwan https://doi.org/10.1109/MMSE.2000.897232
  20. S. M.J ung, S. C. Shin, H. K. Baik, and M. S. Park, 'An efficient multi-level successive elimination algorithm for motion estimation in video coding,' Proc.(CD version) of International Conference on Signal Processing Applications & Technology, AUGUST, 2000, USA
  21. S. M. Jung, S. C. Shin, H. K. Baik, and M. S. Park, 'New fast successive elimination algorithm,' Proc.(CD version) of the 43rd IEEE Midwest Symposium on Circuits and Systems, August. 2000, USA https://doi.org/10.1109/MWSCAS.2000.952833
  22. T. M. Apostol, 'Mathematical Analysis. Reading,' MA: Addison-Wesley, 1975
  23. A. Gersho and R. M. Gray, 'Vector Quantization and Signal Compression,' Boston, MA: Kluwer, 1991