• 제목/요약/키워드: Distance-Learning

검색결과 1,066건 처리시간 0.028초

과학과 자기보고식 정의적 영역 평가의 정확성에 영향을 주는 요소 탐색 (Exploring the Factors Influencing on the Accuracy of Self-Reported Responses in Affective Assessment of Science)

  • 정수임;신동희
    • 한국과학교육학회지
    • /
    • 제39권3호
    • /
    • pp.363-377
    • /
    • 2019
  • 이 연구는 자기보고식 검사를 통해 과학 관련 정의적 영역을 평가하려할 때 검사 결과에서 나타나는 주관성의 양상을 과학 특이적 측면에서 밝혔다. 과학 관련 개념이나 인식을 측정하려할 때 학생이 지닌 과학 특성, 본성에 대한 인식이 원인이 되어 나타나는 반응을 과학 특이적 반응으로 정의했다. 그 중에서 과학 특이적 반응이 특별히 측정 구인을 방해하거나 정확한 자기 보고를 벗어나게 하는 경우에 대해 탐색했다. 고등학교 1, 2학년 649명의 정의적 특성 및 심리적 특성을 검사한 양적 자료와 학생 44명을 면담한 질적 자료로부터 과학 특이적 요소로 인한 오차 결과를 도출했다. 학생이 일상과 과학 학습 경험으로부터 내면화한 과학에 대한 관점과 과학 특성은 검사 도구를 이루는 문항들과 상호작용한다. 그 결과 과학의 특성, 개인의 과학 경험, 검사 도구 속 과학이라는 세 측면에서 정확한 자기 보고를 방해하는 요소가 발견되었다. 과학 본질적 측면과 관련 있는 과학의 특성은 학생들이 과학을 보는 관점과 주관적으로 인식한 과학의 특성이 측정하려는 구인에 관계없이 문항에 반응하도록 한다. 학습자 측면에서 개인의 과학 경험은 학생이 지닌 과학 동기, 과학 경험과의 상호작용, 과학과 삶에 대한 인식으로 구성된다. 마지막으로 도구적 측면에서 검사 도구 속 과학은 과학 개념의 불명확성으로 인한 용어 혼동으로 연결되며 정확한 자기보고를 방해할 수 있다. 본 연구 결과에 의한 시사점으로 검사 문항에서 과학 특이적 요소의 포함 여부 검토, 측정 개념을 명확히 하기 위한 주의점, 개발 단계에서의 과학 특이성 요소 검토, 일상 과학과 학교 과학의 괴리를 줄이려는 노력 필요 등을 제안했다.

메타버시티 앱을 이용한 동영상 강의 만족도 조사 (Satisfaction Survey on Video Lectures using the Metaversity App)

  • 박정규;전병규;정경환
    • 한국방사선학회논문지
    • /
    • 제18권2호
    • /
    • pp.101-108
    • /
    • 2024
  • 최근 메타버스 기술이 다양한 분야에서 중요한 화두로 떠오르고 있다. 메타버스는 현실 세계와 유사한 사회적, 경제적 활동이 가능한 3차원의 가상공간을 의미한다. 2023년 9월부터 12월까지 본 대학 방사선학과에서 메타버시티 앱을 적용하여 수업한 3학년 재학생 235명 중 설문에 참여한 200명을 그 대상으로 메타버시티 앱을 적용 시 학생의 호응도와 만족도 차이를 분석하였다. 첫째, VOD 시청 방법으로 만족하는 방식은 메타버시티 앱을 통한 시청, LMS를 통한 시청의 순이었다. 둘째, '나는 휴일 보강은 온라인 영상이 적절하다고 생각한다.' 가 4.35±0.60으로 가장 높은 점수를 보였으며, '나는 대면수업과 온라인 수업이 병행되었으면 한다.'는 4.25±0.87이었으며, '나는 메타버시티 앱을 통해 잘 시청하였다.'는 4.10±0.30, '수업에서 메타버시티 앱을 통한 VOD 시청은 적절하게 사용되었다.'는 3.99±0.75로 가장 낮게 나타났다. 또한 수업 방법의 호응도는 유의한 차이가 없었다(p>0.05). 셋째, 메타버시티 앱을 이용한 VOD 시청의 만족도로 '메타버시티 앱을 적용하니 흥미롭고 재미가 있었다.'가 4.24±0.88로 가장 높은 점수를 보였으며, '적극적인 메타버시티 앱을 활용하기 위해서는 보다 나은 개선이 필요하다.'가 4.00±0.45로, '메타버시티 앱이 다른 원격수업에서도 시행되었으면 한다.'가 3.77±0.88로 나타났다. '기존 LMS 방식보다 메타버시티 앱을 통한 VOD 수업이 낫다.'가 3.44±0.66으로 나타났다. 또한 나이, 성별에 따른 수업에 대한 만족도는 유의한 차이는 없었다(p>0.05). 메타버시티 앱에 대한 호응도와 만족도의 상관관계는 0.601이며, 이는 매우 유의한 것으로 나타났다(p>0.001). 본 연구의 제한점으로 메타버시티 앱을 활용한 교육 만족도를 조사하였으나, 지도하는 교수자와 학생과 상호 작용 만족도는 조사 하지 못하였으며, 차후 교수자의 메타버시티 앱을 활용한 수업의 만족도 연구가 진행되어야 할 것이다. 원격수업을 대비하기 위한 메타버시티 앱을 수업에 적용하기 위해서는 대학에서 행정적 및 제도적 지원과 지속적인 주목을 하여야 할 것이다.

S-MTS를 이용한 강판의 표면 결함 진단 (Steel Plate Faults Diagnosis with S-MTS)

  • 김준영;차재민;신중욱;염충섭
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.47-67
    • /
    • 2017
  • 강판 표면 결함은 강판의 품질과 가격을 결정하는 중요한 요인 중 하나로, 많은 철강 업체는 그동안 검사자의 육안으로 강판 표면 결함을 확인해왔다. 그러나 시각에 의존한 검사는 통상 30% 이상의 판단 오류가 발생함에 따라 검사 신뢰도가 낮은 문제점을 갖고 있다. 따라서 본 연구는 Simultaneous MTS (S-MTS) 알고리즘을 적용하여 보다 지능적이고 높은 정확도를 갖는 새로운 강판 표면 결함 진단 시스템을 제안하였다. S-MTS 알고리즘은 단일 클래스 분류에는 효과적이지만 다중 클래스 분류에서 정확도가 떨어지는 기존 마할라노비스 다구찌시스템 알고리즘(Mahalanobis Taguchi System; MTS)의 문제점을 해결한 새로운 알고리즘이다. 강판 표면 결함 진단은 대표적인 다중 클래스 분류 문제에 해당하므로, 강판 표면 결함 진단 시스템 구축을 위해 본 연구에서는 S-MTS 알고리즘을 채택하였다. 강판 표면 결함 진단 시스템 개발은 S-MTS 알고리즘에 따라 다음과 같이 진행하였다. 첫째, 각 강판 표면 결함 별로 개별적인 참조 그룹 마할라노비스 공간(Mahalanobis Space; MS)을 구축하였다. 둘째, 구축된 참조 그룹 MS를 기반으로 비교 그룹 마할라노비스 거리(Mahalanobis Distance; MD)를 계산한 후 최소 MD를 갖는 강판 표면 결함을 비교 그룹의 강판 표면 결함으로 판단하였다. 셋째, 강판 표면 결함을 분류하는 데 있어 결함 간의 차이점을 명확하게 해주는 예측 능력이 높은 변수를 파악하였다. 넷째, 예측 능력이 높은 변수만을 이용해 강판 표면 결함 분류를 재수행함으로써 최종적인 강판 표면 결함 진단 시스템을 구축한다. 이와 같은 과정을 통해 구축한 S-MTS 기반 강판 표면 결함 진단 시스템의 정확도는 90.79%로, 이는 기존 검사 방법에 비해 매우 높은 정확도를 갖는 유용한 방법임을 보여준다. 추후 연구에서는 본 연구를 통해 개발된 시스템을 현장 적용하여, 실제 효과성을 검증할 필요가 있다.

관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템 (Automatic gasometer reading system using selective optical character recognition)

  • 이교혁;김태연;김우주
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.1-25
    • /
    • 2020
  • 본 연구에서는 모바일 기기를 이용하여 획득한 가스계량기 사진을 서버로 전송하고, 이를 분석하여 가스 사용량 및 계량기 기물 번호를 인식함으로써 가스 사용량에 대한 과금을 자동으로 처리할 수 있는 응용 시스템 구조를 제안하고자 한다. 모바일 기기는 일반인들이 사용하는 스마트 폰에 준하는 기기를 사용하였으며, 획득한 이미지는 가스 공급사의 사설 LTE 망을 통해 서버로 전송된다. 서버에서는 전송받은 이미지를 분석하여 가스계량기 기물 번호 및 가스 사용량 정보를 추출하고, 사설 LTE 망을 통해 분석 결과를 모바일 기기로 회신한다. 일반적으로 이미지 내에는 많은 종류의 문자 정보가 포함되어 있으나, 본 연구의 응용분야인 가스계량기 자동 검침과 같이 많은 종류의 문자 정보 중 특정 형태의 문자 정보만이 유용한 분야가 존재한다. 본 연구의 응용분야 적용을 위해서는 가스계량기 사진 내의 많은 문자 정보 중에서 관심 대상인 기물 번호 및 가스 사용량 정보만을 선별적으로 검출하고 인식하는 관심 문자열 인식 기술이 필요하다. 관심 문자열 인식을 위해 CNN (Convolutional Neural Network) 심층 신경망 기반의 객체 검출 기술을 적용하여 이미지 내에서 가스 사용량 및 계량기 기물번호의 영역 정보를 추출하고, 추출된 문자열 영역 각각에 CRNN (Convolutional Recurrent Neural Network) 심층 신경망 기술을 적용하여 문자열 전체를 한 번에 인식하였다. 본 연구에서 제안하는 관심문자열 기술 구조는 총 3개의 심층 신경망으로 구성되어 있다. 첫 번째는 관심 문자열 영역을 검출하는 합성곱신경망이고, 두 번째는 관심 문자열 영역 내의 문자열 인식을 위해 영역 내의 이미지를 세로 열 별로 특징 추출하는 합성곱 신경망이며, 마지막 세 번째는 세로 열 별로 추출된 특징 벡터 나열을 문자열로 변환하는 시계열 분석 신경망이다. 관심 문자열은 12자리 기물번호 및 4 ~ 5 자리 사용량이며, 인식 정확도는 각각 0.960, 0.864 이다. 전체 시스템은 Amazon Web Service 에서 제공하는 클라우드 환경에서 구현하였으며 인텔 제온 E5-2686 v4 CPU 및 Nvidia TESLA V100 GPU를 사용하였다. 1일 70만 건의 검침 요청을 고속 병렬 처리하기 위해 마스터-슬레이브 처리 구조를 채용하였다. 마스터 프로세스는 CPU 에서 구동되며, 모바일 기기로 부터의 검침 요청을 입력 큐에 저장한다. 슬레이브 프로세스는 문자열 인식을 수행하는 심층 신경망으로써, GPU에서 구동된다. 슬레이브 프로세스는 입력 큐에 저장된 이미지를 기물번호 문자열, 기물번호 위치, 사용량 문자열, 사용량 위치 등으로 변환하여 출력 큐에 저장한다. 마스터 프로세스는 출력 큐에 저장된 검침 정보를 모바일 기기로 전달한다.

마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안 (Multi-Dimensional Analysis Method of Product Reviews for Market Insight)

  • 박정현;이서호;임규진;여운영;김종우
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.57-78
    • /
    • 2020
  • 인터넷의 발달로, 소비자들은 이커머스에서 손쉽게 상품 정보를 확인한다. 이때 활용되는 상품 리뷰는 사용자 경험을 토대로 작성되어 구매의사결정의 효율성을 높일 뿐만 아니라 상품 개발에 도움을 주기도 한다. 하지만, 방대한 양의 상품 리뷰에서 관심있는 평가차원의 세부내용을 파악하는 데에는 많은 시간과 노력이 소비된다. 예를 들어, 노트북을 구매하려는 소비자들은 성능, 무게, 디자인과 같은 평가차원에 대해 각 차원별로 비교 상품의 평가를 확인하고자 한다. 따라서 본 논문에서는 상품 리뷰에서 다차원 상품평가 점수를 자동적으로 생성하는 방안을 제안하고자 한다. 본 연구에서 제시하는 방안은 크게 2단계로 구성된다. 사전준비 단계와 개별상품평가 단계로, 대분류 상품군 리뷰를 토대로 사전에 생성된 차원분류모델과 감성분석모델이 개별상품의 리뷰를 분석하게 된다. 차원분류모델은 워드임베딩과 연관분석을 결합함으로써 기존 연구에서 차원과 단어들의 관련성을 찾기 위한 워드임베딩 방식이 문장 내 단어의 위치만을 본다는 한계를 보완한다. 감성분석모델은 정확한 극성 판단을 위해 구(phrase) 단위로 긍부정이 태깅된 학습데이터를 구성하여 CNN 모델을 생성한다. 이를 통해, 개별상품평가 단계에서는 구 단위의 리뷰에 준비된 모델들을 적용하고 평가차원별로 종합함으로써 다차원 평가점수를 얻을 수 있다. 본 논문의 실험에서는 대분류 상품군 리뷰 약 260,000건으로 평가모델을 구성하고, S사와 L사의 노트북 리뷰 각 1,011건과 1,062건을 실험데이터로 활용한다. 차원분류모델은 구로 분해한 개별상품 리뷰를 6개 평가차원으로 분류했고, 기존 워드임베딩 방식보다 연관분석을 결합한 모델의 정확도가 13.7% 증가했음을 볼 수 있었다. 감성분석모델은 문장보다 구 단위로 학습한 모델이 평가차원을 면밀히 분석함으로써 29.4% 더 높은 정확도를 보임을 확인했다. 본 연구를 통해 판매자, 소비자 모두가 상품의 다차원적 비교가 가능하다는 점에서 구매 및 상품 개발에 효율적인 의사결정을 기대할 수 있다.

대형할인점 확산에 대한 공간적 영향 (Spatial effect on the diffusion of discount stores)

  • 주영진;김미애
    • 한국유통학회지:유통연구
    • /
    • 제15권4호
    • /
    • pp.61-85
    • /
    • 2010
  • 본 연구에서는 국내 대형할인점의 확산을 효과적으로 설명하기 위해 기업의 정보와 구매자의 구전으로 확산을 설명하는 Bass모형에 제3의 요소로 공간적 영향력을 고려하였다. 국내 대형할인점의 확산은 확산중심지인 서울경인지역에서 저차중심지인 4개 지역권역으로 확산되는 형태를 보임에 따라 공간적 영향이 중요하게 작용할 것으로 기대된다. 본 연구에서 공간적으로 구분된 시장 A(확산중심지)가 시장 B(저차중심지)에 미치는 영향이 완전히 통제되지 못하는 상황에서 시장 A가 시장 B에 미치는 공간적 영향을 다국가확산모형(multinational diffusion model)을 확장한 공간확산모형(spatial diffusion model)을 이용하여 정의하였다. Bass모형과 공간확산모형의 모수추정을 통해 두 가지 정보전달경로와 관련된 혁신계수와 모방계수로 확산을 설명하는 Bass모형보다 공간확산모형이 국내 대형할인점 확산을 더욱 효과적으로 설명하는 것으로 나타났다. 또한 혁신중심지인 서울경인과 4개 지역권역의 소매환경을 나타내는 개념적 거리에 따라 공간확산모형에서 공간적요인의 영향력이 달라질 것이 기대되어 공간확산계수와 소매환경변수간의 상관관계를 살펴보았고, 연구결과 확산중심지에서 저차중심지에 대한 공간적 영향력은 저차중심지의 소매환경이 확산중심지의 소매환경과 유사할수록 크다는 것을 밝혀내었다.

  • PDF