• Title/Summary/Keyword: Distance measuring system

Search Result 449, Processing Time 0.026 seconds

Measurement of Dynamic Characteristics on Structure using Non-marker Vision-based Displacement Measurement System (비마커 영상기반 변위계측 시스템을 이용한 구조물의 동특성 측정)

  • Choi, Insub;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.301-308
    • /
    • 2016
  • In this study, a novel method referred as non-marker vision-based displacement measuring system(NVDMS) was introduced in order to measure the displacement of structure. There are two distinct differences between proposed NVDMS and existing vision-based displacement measuring system(VDMS). First, the NVDMS extracts the pixel coordinates of the structure using a feature point not a marker. Second, in the NVDMS, the scaling factor in order to convert the coordinates of a feature points from pixel value to physical value can be calculated by using the external conditions between the camera and the structure, which are distance, angle, and focal length, while the scaling factor for VDMS can be calculated by using the geometry of marker. The free vibration test using the three-stories scale model was conducted in order to analyze the reliability of the displacement data obtained from the NVDMS by comparing the reference data obtained from laser displacement sensor(LDS), and the measurement of dynamic characteristics was proceed using the displacement data. The NVDMS can accurately measure the dynamic displacement of the structure without the marker, and the high reliability of the dynamic characteristics obtained from the NVDMS are secured.

A Study on the Use of Scientific Investigation Equipment to Support Decision-making of the Resident Evacuation in the Event of a Chemical Accident (화학사고 발생에 따른 주민대피 의사결정 지원을 위한 과학조사장비 활용방안 연구)

  • Oh, Joo-Yeon;Lee, Tae Wook;Cho, Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1817-1826
    • /
    • 2022
  • After the hydrogen fluoride leak in Gumi in 2012, the government has been systemizing the disaster management system, such as responding to and managing chemical accidents. In particular, the Ministry of the Interior and Safety (MOIS) is in charge of evacuation of residents following chemical accidents based on the Framework Act on Management of Disaster and Safety. In this study, an application plan was presented to support and utilize the decision-making support for evacuation of residents after a chemical accident using the chemical accident investigation equipment of the National Disaster Management Research Institute (NDMI). In the equipment operation system for scientific information collection due to chemical accidents, the roles and purpose of use of long/short distance measurement equipment were presented according to regular and emergency situations. Using the data acquired through long/short distance measurement equipment, it can be used as basic data for resident evacuation decision-making by monitoring whether chemicals are detected in an emergency and managing data on detected substances by company in a regular situation. As a result of measuring chemical substances in order to verify on-site usability by equipment only for the regular operation system, it was confirmed that real-time detection of chemical substances is possible with long distance measuring equipment. In addition, it was confirmed that it was necessary to check the measurable distance and range of the equipment in the future. In the case of short distance measurement equipment, hydrocarbon-based substances were mainly detected, and it was confirmed that it was measured at a higher level in Ulsan-Mipo National Industrial Complex than in Onsan National Industrial Complex. It is expected that it can be used as basic data to support decision-making in the event of chemical accidents through continuous data construction in the future.

A Study on the Audio Compensation System (음향 보상 시스템에 관한 연구)

  • Jeoung, Byung-Chul;Won, Chung-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.509-517
    • /
    • 2013
  • In this paper, we researched a method that makes a good acoustic-speech system using a digital signal processing technique with dynamic microphone as a transducer. Good acoustic-speech system should deliver the original sound input to electric signal without distortion. By measuring the frequency response of the microphone, adjustment factors are obtained by comparing measured data and standard frequency response of microphone for each frequency band. The final sound levels are obtained using the developed adjustment factors of frequency responses from the microphone and speaker to match the original sound levels using the digital signal processing technique. Then, we minimize the changes in the frequency response and level due to the variation of the distance from source to microphone, where the frequency responses were measured according to the distance changes.

Measuring ultrasonic TOF using Zynq baremetal Multiprocessing (Zynq 기반 baremetal 멀티프로세싱에 의한 초음파 TOF 측정)

  • Kang, Moon ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.93-99
    • /
    • 2017
  • In this research the TOF (time of flight) of ultrasonic signal is measured using Xilinx's Zynq SoC (system on chip). The TOF is calculated from the difference between periods during which RF (radio frequency) and ultrasonic signals come across a distance, and then travelling distance is obtained by multiplying the TOF by the ultrasonic speed in the air. For this purpose, a ultrasonic pulse is generated from a Zynq's internal ADC, a FIR (finite impulse response) filter, and a Kalman filter. And a RF reference pulse is generated from a RF interface. Based on baremetal multiprocessing, the Kalman filter and the RF interface are c-programmed on Zynq's dual processor cores, with other components fabricated on Zynq's FPGA. With this HW/SW co-design, both lower resource utilization and much smaller designing period were obtained than the HW design. As a design tool, Vivado IDE(integrated design environment) is used to design the whole signal processing system in hierarchical block diagrams.

A Study on Localization System using 3D Triangulation Algorithm based on Dynamic Allocation of Beacon Node (비컨노드의 동적배치 기반 3차원 삼각측량 알고리즘을 적용한 위치인식 시스템에 대한 연구)

  • Lee, Ho-Cheol;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.378-385
    • /
    • 2011
  • The three-dimensional triangulation algorithm that the beacon nodes can be allocated to dynamically in not the experimental region but the practical region is suggested, and the performance of the localization system adapting the suggested algorithm is analyzed. The suggested algorithm adapts the computation method of the three dimensional point that the surfaces of three spheres overlapped, while the traditional triangulation algorithm adapts the computation method of the two dimensional point that three circles are overlapped in order to compute the distance between beacon nodes and mobile node that means a radius. In addition to this, to analyze the performance of the localization system adapting the suggested algorithm, first of all, the allocation layout of beacon nodes is made, and the allocation layout is modeled by selection of ten random distance values between mobile node and beacon nodes for computer simulation of the practical model. Next, the two dimensional coordinator of mobile node that is calculated by the suggested algorithm and the traditional triangulation algorithm is compared with each other. The localization measuring performance about three dimensional coordinator(z axis) of the suggested algorithm is also obtained by comparing with that of the practical model.

A CMOS UWB RFIC Based Radar System for High Speed Target Detection (초고속 이동체 탐지에 적합한 초광대역 CMOS RFIC 기반 레이다 시스템)

  • Kim, Sang Gyun;Eo, Yun Seong;Park, Hyung Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.419-425
    • /
    • 2017
  • This paper presents CMOS UWB RFIC based radar system for high speed target detection. The system can achieve resolution of 15 cm and detection range of 15 m. For developed system, single chip CMOS UWB IC is implemented. To reduce the measuring and processing time, envelope detection and equivalent time sampling technique are used. Measurement results show that the bandwidth and center frequency of UWB pulse can be adjusted in the range of 0.5 GHz~1.0 GHz, 3.5 GHz~4.5 GHz, respectively. Signal processing time including scan time over 15 m distance is about $150{\mu}sec$.

Automatic Focusing Vision System for Inspection of Size and Shape of Small Hole (소형(1mm이하) hole의 형태 및 크기 측정을 위한 자동초점 비젼검사기)

  • Han, Moon-Yong;Han, Hern-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.80-86
    • /
    • 1999
  • Since the quality of the coated wires is in various applications dependant on the coating depth, accuracy of hole size of dies used for coating wires must be maintained precisely, in general within one micron. This paper proposes a new vision system which measures automatically the size and shape of small holes having diameters less than 1mm within an error limit of 1 micron. To quickly obtain the focused image, this paper proposes an estimation method of the camera position using only a couple of defocused hole images. It measures the distributions of light intensity around the image boundary and decides the direction and distance of a camera motion. The proposed system measures the size, shape distortion, inclination of the hole against the axis of the dies structure, to decides the acceptability of the dies for use. The proposed algorithm has been implemented using a cheap 640${\times}$480 image system and has shown an average size error of 1micron when measuring the dieses having 0.1mm to 1.0mm diameters. It can be applied to the inspection of the size and position of holes in PCB, too.

  • PDF

Classification of Convective/Stratiform Radar Echoes over a Summer Monsoon Front, and Their Optimal Use with TRMM PR Data

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.465-474
    • /
    • 2009
  • Convective/stratiform radar echo classification schemes by Steiner et al. (1995) and Biggerstaff and Listemaa (2000) are examined on a monsoonal front during the summer monsoon-Changma period, which is organized as a cloud cluster with mesoscale convective complex. Target radar is S-band with wavelength of 10cm, spatial resolution of 1km, elevation angle interval of 0.5-1.0 degree, and minimum elevation angle of 0.19 degree at Jindo over the Korean Peninsula. For verification of rainfall amount retrieved from the echo classification, ground-based rain gauge observations (Automatic Weather Stations) are examined, converting the radar echo grid data to the station values using the inverse distance weighted method. Improvement from the echo classification is evaluated based on the correlation coefficient and the scattered diagram. Additionally, an optimal use method was designed to produce combined rainfalls from the radar echo and Tropical Rainfall Measuring Mission Precipitation Radar (TRMM/PR) data. Optimal values for the radar rain and TRMM/PR rain are inversely weighted according to the error variance statistics for each single station. It is noted how the rainfall distribution during the summer monsoon frontal system is improved from the classification of convective/stratiform echo and the use of the optimal use technique.

Monitoring of the Jamming Environment in the GNSS L5 Band in Korea Region

  • Lee, Hak-beom;Song, Young-Jin;Park, Dong-Hyuk;Lee, Sanguk;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.353-361
    • /
    • 2021
  • This paper presents the jamming effect on the L5 band of Global Navigation Satellite System (GNSS) by analyzing real data collected via measurement campaigns in Korea region. In fact, the L5 band is one of the dedicated bands for various satellite navigation systems such as Global Positioning System (GPS), Galileo, BeiDou (BDS), and Quasi Zenith Satellite System (QZSS). And this band is also allocated along with various systems used for aeronautical radio navigation systems (ARNS). Among ARNS, the Distance Measuring Equipment (DME) and the Tactical Air Navigation System (TACAN) are systems that transmit and receive strong power pulse signals, which may cause unintentional jamming in the reception of GNSS signals. In this paper, signals in the main lobe of GPS L5, Galileo E5a, BDS B2a, and QZSS L5 are collected in Korean region to confirm whether the jamming effect exists in the band. And then, the pulse blanking technique, which is a simple signal processing technique capable of responding to pulsed jamming, is applied to analyze the jamming effect of DME/TACAN on the L5 band.

A Study on Patients Dose and Image Quality according to Source to Image receptor Distance in Abdomen Radiography: comparison of ESD measured and DRLs in other countries (복부일반촬영시 선원과 검출기간의 거리변화에 따른 영상 화질 및 피폭선량에 관한 연구)

  • Jang, Ji-Sung;Choi, Weon-Keun;Jung, Jae-Yon;Lee, Kwan-Sub;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.39-46
    • /
    • 2012
  • Purpose : The purpose of this study was to reduce Entrance Surface Dose and maintain image quality by changing Source to Image receptor Distance. And we'd like to compare ESD on this study to DRLs in other contries. Materials and Methods : We used indirect DR system(Definium 8000, General Electric, USA)and phantom(ART-200X, Flukebiomedical, USA),glass dosimeters(GD-352M, Asahi Techno Glass, Japan)for this study. The imagies were obtained throuh 80kVp fixed, and different tube currents using AEC mode in $16{\times}16$(inch) field size and changing Source to Image receptor Distance from 100 cm to 130 cm per 10 cm unit. The phantom with attaching 5 glass dosimeters on abdomonal skin was set at supine and erect position as a anterioposterial projection on detector For measuring Entrance Surface Dose. Image analysis was conducted by histograms of Image J(1.46r) which was given from National Institutes of Health(NIH). Results : Due to inverse square law of distance, the tube currents were increasing 42.6 % in supine position and 32.6 % in erect position according to the change of Source to Image receptor Distance. While Entrance Surface Doses were rapidly decreasing 14.2 % in supine position and 29.4 % in erect position according to the change of Source to Image receptor Distance. As the results of histogram using Image J, pixel mean values from 100 cm to 110 cm, 120 cm and 130 cm were decreasing each 1.4%, 2.5%, 2.7%, 4.5%, 2.2 %, 5.8 % in supine, erect position. While standard deviations from 100 cm to 110 cm, 120 cm and 130 cm were increasing each 1.4 %, 2.5 %, 2.5 %, 4.0 %, 2.0 %, 4.9 % Consequently, there are no significant differences in abdomen images taken. Conclusion: As the results described above, we strongly recommend using long Sourceto Image receptor Distance than 100cm that we have been using. So, we should deliver less Entrance Surface Dose to the patients while maintaining image quality in abdomen radiography.

  • PDF