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Abstract

In this research the TOF (time of flight) of ultrasonic signal is measured using XilinX's Zyng SoC (system on chip).
The TOF is calculated from the difference between periods during which RF (radio frequency) and ultrasonic signals come
across a distance, and then travelling distance is obtained by multiplying the TOF by the ultrasonic speed in the air. For
this purpose, a ultrasonic pulse is generated from a Zyng's internal ADC, a FIR (finite impulse response) filter, and a
Kalman filter. And a RF reference pulse is generated from a RF interface. Based on baremetal multiprocessing, the
Kalman filter and the RF interface are c-programmed on Zyng's dual processor cores, with other components fabricated on
Zyng's FPGA. With this HW/SW co-design, both lower resource utilization and much smaller designing period were
obtained than the HW design. As a design tool, Vivado IDE(integrated design environment) is used to design the whole

signal processing system in hierarchical block diagrams.
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I. Introduction

With the development of digital signal processing
algorithms,
developed

high-performance devices are being
which HW/SW

integrating both FPGA and processors in a single

enable co—design

chip. As an example, the Zyng-7000 SoC (system on
chip™, which integrates both Xilinx's 7-series FPGA
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and dual-core ARM processor, has been applied in
the fields needing high-performance digital signal
=6 On the

implement multiprocessing based on its dual cores,

processing other hand, Zynq can
which enhances its usability. With the asymmetric
multiprocessing without OS (operating system), called

performed
S [7 ~8].

baremetal, two applications can be
independently without interferences from O
In this study,

system for calculating the ultrasonic TOF (time of

an ultrasonic signal processing
ﬂight)[g] 1s produced and test results are shown. The
system 1s composed of an ultrasonic transmitter and

a receiver. Ultrasonic transmitter produces periodic
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Fig. 1. Ultrasonic signal multiprocessing system using Zynq (a) Ultrasonic sender (b) Ultrasonic receiver.

40kHz ultrasonic waves and 24GHz RF (radio
frequency) signals. Consisting of an ultrasonic sensor,
a RF module and a Zyng board, ultrasonic receiver
detects both ultrasonic waves and RF signals, then
generates an ultrasonic pulse and a timing RF pulse.
The TOF is calculated from the time difference
between these pulses. All
configured on a Zynq SoC - ADC interface, FIR filter,
absolute value calculator, Kalman filter, RF interface,

design elements are

TOF calculation module, and etc.

The whole system was designed by using the
baremetal multiprocessing with three parts, ultrasonic
pulse generation, RF pulse generation, and TOF
calculation. With suitable IPs (Intellectual property)[Z],
components are fabricated on the FPGA by the IPs,
or, components are programed on processor cores by
the c-programs. The ultrasonic pulse generation is
implemented on the Zyng's FPGA and the first
processor core (cpu0), and both RF pulse generation
and TOF calculation are implemented on the second
processor core (cpul). By the HW/SW co-design like
this, it was possible to obtain both lower resource
utilization and much smaller design period than the
HW design, as well as favorable TOF accuracy. The
entire system is designed by the Xilinx’s Vivado IDE

)[10]

(Integrated Design Environment in the form of

hierarchical block diagrams.

IT. Ultrasonic signal multiprocessing system

Fig. 1 shows entire system block diagram. The
ultrasonic transmitter consists of a ultrasonic sender
module and a RF module, and the ultrasonic receiver
consists of a ultrasonic sensor, a RF module, and a
Zyng-7010 board™. The transmitter transmits 40kHz
ultrasonic signal and 24GHz RF signal periodically

towards the receiver.

1. Ultrasound pulse generation

When the ultrasonic signal is received at the
ultrasonic receiver, it is amplified and then sampled
by Zynq's internal 12-bit ADC with the maximum
sampling frequency of 1MHz. The sampled signal is
applied to a FIR band pass filter having a center
frequency of 40kHz to remove dc offset value. After
rectified through an absolute value calculator (ABS),
and filtered by a Kalman filter to remove ripples, the
ultrasonic wave envelope is detected"”. Finally, an
ultrasonic pulse is generated after the ultrasound
envelope 1s compared with a reference level.
Components from the ADC interface to the ABS
module are fabricated on the FPGA, and the Kalman

filter 1s programmed by c-codes in the cpu0.
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2. RF pulse generation and TOF calculation

To calculate the TOF on the receiver, the start
time of the ultrasonic wave transmission should be
known, so, a RF signal is transmitted along with the
ultrasound. Ignoring the propagation delay time of the
RF signal in air, the TOF can be calculated from the
arrival time difference between the ultrasound and
the RF signals at the receiver. For this purpose, a
RF pulse is generated synchronously with the arrival
of the RF signal, which is programmed by c—codes in
the cpul. Fig. 2 shows a flow diagram of the
baremetal multiprocessing of the Zynqg, which shows
that cpu0 is programmed to generate the ultrasonic
pulse as a master, and that cpul, waken by the cpu0,
1s programmed to initialize the RF module and

calculate the TOF along with traveling distance.

[ cpuld(master) start ]
[V

Disable cache for the shared
memory access(DDR, OCM)

W
Save cpul start-address
at address Oxfffffff0

b
| Wake up cpul

—

Execute application :
Kalman filtering TOF/Dist. calculation

L ] L]
3% 2. baremetal HE-ZZAM[A HX}
Fig. 2. Flow of baremetal multiprocessing.

[ cpul(slave) start ]

Read Oxfffffff0 &
Jump to start-address

—

Execute application :
Init. RF module &

All blocks of Fig. 1 are designed using the Xilinx
Vivado and outputs from the blocks are collected in
real time by an integrated logic analyzer IP (ILA)™
and transferred to PC. Fig. 3 shows the ultrasonic

transmitter and receiver PCB boards.

II. System design by Vivado

1. Vivado system schematic

Fig. 4 shows the system schematic designed on
the Vivado IDE. Front-end XAdc_SysMon block is
used for interfacing the Zyng's built-in ADC and for
sampling the received ultrasonic signal. FIR_BPF
block implements the FIR band pass filter. ABSfnc
block is for calculating the absolute value, and
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Kalman_Rf block performs Kalman filtering along
with RF interface. Table 1 shows major design
specifications of each system components. Fig. 5
shows the internal structure of the Kalman_Rf block
shown in Fig. 4. Accepting the output from the
ABSfnc block via axigpio module, Zyng's dual-core
processor block (ZYNQ_PS7) performs the Kalman
filtering, ultrasound and RF pulse generations, and
TOF and moving distance calculations. For the

remaining blocks please refer to reference!.

1

Tablet.

A2 MA AtF

System design specification.

ADC(@Z-7010) | sampling: 333[kHz] input channels: 14

BW sampling | order
35~45[kHz] | 1IMHz] | 100

window

FIR BPF

hamming

Kalman Filter |order:l  R/Q: 2500/1 execution cycle: 0.5us

Ultrasonic modules | nominal freq.: input volt.:
sender(MA4054S) 40[kHz] 18(square)[Vp—p]
receiver(MA40S4R) | 40[kHz] -

RF module(CC2500) | 24GHz ISM/SRD band transceiver

R : measurement noise cov. Q : process noise cov.

2. File building procedure

Fig. 6 shows file building procedure during system
design. After entire system schematic is created, a
bitstream file is generated to fabricate Zyng's FPGA
part. Then, a first stage boot loader (FSBL) is

generated which is responsible for loading application
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Fig. 5. Internal configuration of Kalman_Rf block.

c—codes into the two cores, cpu0 and cpul. After
application codes are made, memory areas for the
cpu0 and cpul are defined by linker script files.
Finally, FSBL, bitstream file and application codes
are integrated into a boot image. Then, an executable
file (mes file) which will be downloaded onto the
flash memory of target board is generated from the

boot-image.

IV. Test and analysis

System specifications are shown in the table 1 of
the chapter I. With sampling frequency of 333kHz,
ADC samples 40kHz ultrasonic signal. FIR filter's
band width is 35~45kHz and its sampling frequency
is set to IMHz. Kalman filter's R and Q are set to
2500 and 1, respectively. The execution cycle of the
Kalman filtering is about 0.5ps. RF module is made

up of a 24GHz transceiver!.

1. Resource utilization

Fig. 7 shows schematic diagram for detecting the
ultrasonic envelope along with percent utilizations of
the Zynq FPGA parts to implement the schematic
where Kalman filter block is c—coded on the cpu0 but
other blocks are fabricated on FPGA (HW/SW
co—design). Fig. 8 shows another schematic. Compared
with Fig. 7, all elements are designed on FPGA (HW

Make system schematic
diagram with Vivado

L

Make bit-stream file for
schematic diagram

1

Define memory region
for cpu0 and cpul by
linker script files

Make FSBL Make Zyng Boot Image
(first stage boot loader) with FSBL, bit-stream file
\l/ and application programs
Make cpu0 ‘~|/
application c-program Make downloadable mcs file
from Boot Image

Make cpul
application c-program

J3 6.
Fig. 6.

A2 ol M Hxt

System file building procedure.
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System
design) where a low pass filter (FIR_LPF) is adopted
to replace the Kalman filter of Fig. 7. According to
. . . —> HW/SW co-design
the utilization results, it can be seen that not only - -=> HW design
Implementation
DSP slice (DSP48) utilization of the HW design v
. FPGA Generate Programming
becomes double compared to the HW/SW co-design redesign bitstream c-application
o ) (FIR-LPF) T
but considering other resources, HW/SW co-design & E——
. .. . . bitst:
is more efficient than the HW design in resource T
utilization. o c-application
c-[;owl?c‘::':n < c-aREl\Jik:!‘tjion €] redesign
PP | PP (Kalman filter)

2. Design period i
) . O 9. AIAE M F MR}
Fig. 9 shows steps for system design tasks. The Fig. 9. Flow of system design tasks.

dotted lines indicate paths corresponding to the HW
design and the solid lines show the HW/SW F2. AAE MA FHY 4 J(ZH

co-design paths. In the HW design, whenever a Table2. Periods of each system design tasks.

redesign is needed, synthesis, implementation, and design type tasks periods[s] | sumls]
generation and download of bitstream should be Synthesis 186
performed, but, in the HW/SW, only build and HW design | Implementation | 197 47
download of the c—application file are needed. Table 2 - BitStr,eam £ il

HW/SW codesign | Rebuild 3 3

shows measures of the periods for these tasks. From
Xilinx Vivado 2014.1, Intel Core 2.5GHz

(939)
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with a reference level. TOF is calculated by the time
difference between the rising edges of a RF pulse
and an ultrasonic pulse. Fig. 11 shows moving
distances of the ultrasonic waves, calculated by
multiplying the TOF by ultrasonic velocity in air.
Placing the ultrasonic transmitter and receiver about
2.3 meters away, distances are calculated 1000 times
with 15ms sample time by changing the reference
levels. From the figure, it can be seen that the
distances varies within about 3 cm depending on the
reference levels and increases as the level increases.
Future research will be conducted to obtain more
accurate measurement results by compensating the
variance according to the comparison level and by

designing digital filters.

V. Conclusion

In this study, an ultrasonic TOF measuring system
using the Zynq SoC-based baremetal multiprocess is
proposed and its test results are shown. The system is
designed with Vivado and implemented by using only
a Zynq SoC. System components are fabricated on
Zyng's FPGA and programmed on the dual process
cores (cpu0 and cpul), so a HW/SW co-design is
implemented. With this baremetal HW/SW co-design,
lower resource utilization and much smaller design
period were obtained than the HW design. And, from
the output waveforms, not only TOF accuracy but

degrading factor were analyzed.
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