• Title/Summary/Keyword: Dissolution Rate

Search Result 615, Processing Time 0.025 seconds

Studies on Dissolution Rate of Drugs (XVI)-Sustained Release of Indomethacin from Polymer Solid Dispersions (의약품의 용출에 관한 연구(제 16보)-고분자 고체분산체로부터 인도메타신의 지속 방출-)

  • Song, Ra-Mi;Kim, Soo-Uck;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.63-69
    • /
    • 1989
  • Dissolution characteristics of indomethacin (IMC) from hydrophobic polymer solid dispersions were investigated. IMC-polyvinyl chloride (PVC) and IMC-ethylcellulose (EC) solid dispersions were prepared. The dissolution patterns of pure IMC, IMC-PVC and IMC-EC solid dispersions prepared at various ratios (1:1, 1:3, 1:5, 1:9 and 1:19 w/w), and those of corresponding physical mixtures were compared. It was found that the dissolution rates of IMC from solid dispersions with PVC or EC decreased in the order of 1:1>1:3>1:5>1:9>1:19 as the drug to polymer ratios decreased. Also the dissolution rates of IMC from EC solid dispersions increased according to flow rate, but PVC solid dispersions were not affected significantly. After all, PVC and EC matrices could be applied in sustained-release preparation of IMC.

  • PDF

Some Factors Influencing the Dissolution Rate of Lorazepam Formulations (Lorazepam제제(製劑)의 용출속도(溶出速度)에 미치는 인자(因子))

  • Lee, Chang-Ki;Song, In-Jung;Choi, Jung-Young;Suh, Sung-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.11 no.2
    • /
    • pp.16-19
    • /
    • 1981
  • The effect of diluents and lubricants on the dissolution rate of lorazepam was studied. The results were as following. 1. An average order of dissolution rate can be stated as; lactose> avicel> starch> kaolin. 2. The effects of lubicants is not significant generally but in the case of starch the dissolution rate is greatly effected by magnesium stearate.

  • PDF

Studies on the Bioavailability of Berberine Preparations (베르베린 제제의 생체 이용율에 관한 연구)

  • Yang, Jae-Heon;Kim, Young-Il
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.1
    • /
    • pp.55-62
    • /
    • 1992
  • In order to measure the bioavailability of Coptidis Rhizoma preparations, berberine was extracted by the mixture (1:1 v/v) of methanol and water from Coptidis Rhizoma and formulated into pills with some excipients. Disintegration time, dissolution rate, intestinal absorption rate, antibacterial effect, and serum concentration were measured. All pills were disintegrated about 60 minutes in gastric and intestinal juices and disintegration time did not change upon storage at $40^{\circ}C$ for 30 days. The pills manufactured using the extract which was extracted with the solvent containing dilute sulfuric acid showed faster dissolution and absorption from the small intestine than the other samples. It also showed not only the largest area under the serum concentration time curve and relative bioavailability, but also more potent antibacterial effect against gram-positive and gram-negative bacterias than the other samples. The correlation of the dissolution rate with absorption rate constant or $t_{max}$ showed a significant linear relationship.

  • PDF

Preparation and Characterization of Enrofloxacin/Carbopol Complex in Aqueous Solution

  • Chun, Myung-Kwan;Choi, Hoo-Kyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.670-675
    • /
    • 2004
  • Since the bitter taste of enrofloxacin apparently limit the patient compliance in the oral formulations of the antibacterial agent, the masking of the taste is essential for the improvement of the therapeutic effectiveness. Therefore, this study was carried out to examine the feasibility of taste masking of enrofloxacin by the retardation of its dissolution rate using the formation of complex between the drug and Carbopol. The complexation between Carbopol and enrofloxacin was confirmed by turbidity, UV spectrophotometry, wide angle X-ray diffraction, and differential scanning calorimetry. The enrofloxacin content in the complexes was 34% (Carbo-enrofloxacin complex I) and 57% (Carbo-enrofloxacin complex II) depending on the prepara-tion method. The dissolution rate of enrofloxacin from the complex increased as the pH was reduced. The dissolution rate of enrofloxacin from the Carbo-enrofloxacin complex I was significantly lower than that of the enrofloxacin powder. Therefore, these observations suggest that Carbo-enrofloxacin complex I can be used to mask the taste of enrofloxacin.

Reductive Dissolution of Spinel-Type Iron Oxide by N2H4-Cu(I)-HNO3

  • Won, Hui Jun;Chang, Na On;Park, Sang Yoon;Kim, Seon Byeong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.387-393
    • /
    • 2019
  • A N2H4-Cu(I)-HNO3 solution was used to dissolve magnetite powders and a simulated oxide film on Inconel 600. The addition of Cu(I) ions to N2H4-HNO3 increased the dissolution rate of magnetite, and the reaction rate was found to depend on the solution pH, temperature, and [N2H4]. The dissolution of magnetite in the N2H4-Cu(I)-HNO3 solution followed the contracting core law. This suggests that the complexes of [Cu+(N2H4)] formed in the solution increased the dissolution rate. The dissolution reaction is explained by the complex formation, adsorption of the complexes onto the surface ferric ions of magnetite, and the effective electron transfer from the complexes to ferric ions. The oxide film formed on Inconel 600 is satisfactorily dissolved through the successive iteration of oxidation and reductive dissolution steps.

Enhancement of Dissolution Properties of Poorly Soluble Drugs (III) -Dissolution Enhancement of Furosemide from Ground Mixtures with Chitin or Chitosan- (난용성 약물의 용출 증가 (제 3 보) -키틴 또는 키토산과의 혼합분쇄물로부터의 푸로세미드의 용출 증가-)

  • Shin, Sang-Chul;Oh, In-Joon;Lee, Kang-Choon;Lee, Yong-Bok;Koh, Ik-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.4
    • /
    • pp.175-181
    • /
    • 1987
  • To increase the dissolution rate of furosemide, chitin and chitosan which are widely occurring biodegradable natural materials were used as drug carriers. The ground mixtures of furosemide with chitin or chitosan were prepared by grinding in a ball mill. The ground mixture showed a faster and more enhanced dissolution rate than the physical mixture or intact furosemide. The crystalline peaks of furosemide disappeared in the ground mixtures indicating the production of amorphous form. The comparison of infrared spectra of the physical mixture and the ground mixture showed an interaction such as association between the functional groups of furosemide and chitin or chitosan in the molecular level. The weight losses in TGA curves showed all the same patterns. However, the endothermic peak due to the fusion of furosemide in DTA curve disappeared in the ground mixture indicating the different thermal property. The dissolution of furosemide from ground mixtures was fast in the order of chitosan and then chitin. The co-grinding technique with chitin or chitosan provided a promising way enhancing the dissolution rate of practically insoluble drug.

  • PDF

Studies on Dissolution Rate of Drugs (XVII)-Dissolution Characteristics of Chlorpropamide Dispersed in Sodium Deoxycholate- (의약품의 용출에 관한 연구(제 17보)-데옥시콜린산나트륨에 분산된 클로르프로파미드의 용출 특성-)

  • Moon, Gi-Ju;Seo, Seong-Hoon;Kim, Soo-Uck
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.3
    • /
    • pp.155-161
    • /
    • 1989
  • Coprecipitates of chlorpropamide (CPA)-sodium deoxycholate (DC-Na) were prepared at various ratios of CPA to the DC-Na. The X-ray diffraction and DSC measurements indicated that CPA in 1:1 and 1:3 w/w CPA-DC-Na coprecipitates did not exist in amorphous form, but the others were amorphous. The dissolution rate of CPA from the CPA-DC-Na coprecipitates increased in distilled water and KP V 2nd disintegration test fluid (pH 6.8), but decreased extremely in KP V 1st disintegration test fluid (pH 1.2). The dissolution rates of CPA-DC-Na coprecipitates were compared with those of CPA alone and CPA-DC-Na physical mixtures. Especially, it was found that the dissolution rate of CPA markedly increased in the case of 1:5 CPA-DC-Na coprecipitate. The concentration of CPA dissolved from CPA-DC-Na coprecipitate reached a plateau within 5-10 min, and thereafter gradually decreased, indicating that CPA released from the coprecipitate was recrystallized.

  • PDF

Dissolution Characteristics of Biphenyl Dimethyl Dicarboxylate from Solid Dispersions and Permeation through Rabbit Deuodenal Mucosa (고체분산체로부터 비페닐디메칠디카르복실레이트의 용출 특성 및 토끼의 십이지장 점막 투과)

  • Hyun, Jean;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.2
    • /
    • pp.57-65
    • /
    • 1994
  • To increase the dissolution rate of practically insoluble biphenyl dimethyl dicarboxylate (DDB), various solid dispersions were prepared with water soluble carriers, such as povidone (PVP K-30), poloxamer 407, sodium deoxycholate (SDC) and polyethylene glycol (PEG) 6000, at drug to carrier ratios of 1:3, 1:5 and 1:10 (w/w) by solvent or fusion method. Dissolution test was performed by the paddle method. The dissolution rate of DDB tablets (25 mg) on market was found to be very low (11.44, 9.02 and 6.42% at pH 1.2, 4.0 and 6.5 after 120 min, respectively). However, dissolution rates of DDB from various solid dispersions were very fast and reached supersaturation within 10 min. DDB-PEG 6000 solid dispersion appeared to be better in enhancing the in vitro dissolution rate than others. Furthermore, the incorporation of DDB and phosphatidylcholine (PC) into ${\beta}-cyclodextrin$ at ratios of 1:2:20, 1:5:20 and 1:10:20 resulted in a 4.9-, 11.2- and 19.6-fold increase in DDB dissolution after 120 min as compared with the pure drug, respectively. This might be attributed to the formation of lipid vesicles which entrapped a certain concentration of DDB during dissolution. On the other hand, the permeation of DDB through rabbit duodenal mucosa was examined using some enhancers such as SDC, sod. glycocholate (SGC) and glycyrrhizic acid ammonium salt (GAA). Only trace amounts of DDB were found to permeate through deuodenal mucosa in the absence of enhancer. SDC was found to markedly decrease the permeation flux of DDB, however, SGC and GAA (5 mM) enhanced the flux of DDB 1.6 and 2.4 times higher as compared with no additive, respectively.

  • PDF

Retarded Dissolution of Ibuprofen in Gelatin Microcapsule by Cross-Linking with Glutaradehyde

  • Yong, Chul-Soon;Li, Dong-Xun;Oh, Dong-Hoon;Kim, Jung-Ae;Yoo, Bong-Kyu;Woo, Jong-Soo;Rhee, Jong-Dal;Choi, Han-Gon
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.520-524
    • /
    • 2006
  • Ibuprofen-loaded gelatin microcapsule, a solid form of microcapsules simultaneously containing ethanol and ibuprofen in water-soluble gelatin shell was previously reported to improve the dissolution of drug. In this study, to retard the initial high dissolution of ibuprofen from gelatin microcapsule, the ibuprofen-loaded cross-linked gelatin microcapsule was prepared by treating an ibuprofen-loaded gelatin microcapsule with glutaraldehyde and its dissolution was evaluated compared to ibuprofen powder and gelatin microcapsule. The ibuprofen-loaded crosslinked microcapsule treated with glutaraldehyde for 10 and 60 sec gave significantly higher dissolution rates than did ibuprofen powder. Furthermore, the dissolution rate of ibuprofen from the cross-linked microcapsule treated for 10 sec was similar to that from gelatin microcapsule. However, the dissolution rate of ibuprofen from the cross-linked microcapsule treated for 60 sec decreased significantly compared to gelatin microcapsule, suggesting that the treatment of gelatin microcapsule with glutaraldehyde for 60 sec could cross-link the gelatin microcapsule. Furthermore, the cross-linking of gelatin microcapsule markedly retarded the release rate of ibuprofen in pH 1.2 simulated gastric fluid compared to gelatin microcapsule. However, the cross-linking of gelatin microcapsule with glutaraldehyde hardly changed the size of gelatin microcapsules, ethanol and ibuprofen contents encapsulated in gelatin microcapsule. Thus, the ibuprofen-loaded cross-linked gelatin microcapsule could retard the initial high dissolution of poorly water-soluble ibuprofen.

The Microsponge Delivery System of Itraconazole: Preparation, Characterization and Release Studies (이트라코나졸 마이크로스폰지의 약물 전달 시스템: 제조, 특성 및 방출 연구)

  • Cho, Young-Ho;Lee, Jong-Hwa;Kim, Hak-Hyung;Lee, Gye-Won
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • Itraconazole is a triazole antifungal agent to inhibit most fungal pathogens. To improve the oral absorption and dissolution of poorly water-soluble itraconazole, microsponge system composed of $Eudragit^{(R)}$ E100 and polyvinyl alcohol(PVA) formulated by quasi-emulsion solvent diffusion method, and its physicochemical properties and pharmacokinetic parameters of itraconazole were studied. The microsponge of itraconazole were discrete free flowing micro sized particles with perforated orange peel like morphology as visualized by scanning electron microscope (SEM). Results showed that the drug loading efficiency, production yield, and particle size of itraconazole microsponge were affected by drug to polymer ratio, the volume of internal phase containing methylene chloride, stirring rate and the concentration of PVA used. Also, the results showed that the dissolution rate of itraconazole from the microsponges was affected by drug to polymer ratio. In other words, the release rate of itraconazole from microsponges was increased from at least 27.43% to 64.72% after 2 h. The kinetics of dissolution mechanism showed that the dissolution data followed Korsmeyer-Peppas model. Therefore, these results suggest that microsponge system can be useful for the oral delivery of itraconazole by manipulating the release profile.