• Title/Summary/Keyword: Dissipate energy

검색결과 181건 처리시간 0.029초

셀프센터링 가새골조의 지진응답 (Seismic Response of Self-Centering Energy Dissipative Braced Frames)

  • 최현훈;;김진구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.331-336
    • /
    • 2008
  • An self-centering energy-dissipative (SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy, such as the buckling restrained brace system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In this study seismic performance of SCED braced frames is evaluated for a set of 20 design level earthquake records. According to analysis results the SCED systems showed more uniform interstory drift demand for buildings with 8 story or fewer. The residual deformation in SCED buildings turned out to be much less than that of moment-resisting frames.

  • PDF

Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials

  • Anoushehei, Majid;Daneshjoo, Farhad;Mahboubi, Shima;Khazaeli, Sajjad
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.239-248
    • /
    • 2017
  • Friction dampers are displacement dependent energy dissipation devices which dissipate earthquake energy through friction mechanism and widely used in improving the seismic behavior of new structures and rehabilitation of existing structures. In this paper, the cyclic behavior of a friction damper with different friction materials is investigated through experimental tests under cyclic loading. The damper is made of steel plates, friction pads, preloaded bolts and hard washers. The paper aims at investigating the hysteretic behavior of three friction materials under cyclic loading to be utilized in friction damper. The tested friction materials are: powder lining, super lining and metal lining. The experimental results are studied according to FEMA-356 acceptance criteria and the most appropriate friction material is selected by comparing all friction materials results.

Testing and modelling of shape memory alloy plates for energy dissipators

  • Heresi, Pablo;Herrera, Ricardo A.;Moroni, Maria O.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.883-900
    • /
    • 2014
  • Shape memory alloys (SMA) can dissipate energy through hysteresis cycles without significant residual deformation. This paper describes the fabrication and testing of copper-based SMA hourglass-shaped plates for use in energy dissipation devices and the development of a numerical model to reproduce the experiments. The plates were tested under cyclic flexural deformations, showing stable hysteresis cycles without strength degradation. A detailed nonlinear numerical model was developed and validated with the experimental data, using as input the constitutive relationship for the material determined from cyclic tests of material coupons under tension loading. The model adequately reproduces the experimental results. The study is focused on the exploitation of SMA in the martensite phase.

인방형 강재댐퍼의 구조성능에 대한 실험적 연구 (Experimental Evaluation of the Seismic Performance for Lintel Beam Type Steel Damper)

  • 노경민;김민숙;이영학
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.77-84
    • /
    • 2017
  • As an alternative to coupling beam in shear wall system, application of the damper which can dissipate energy is increasing. In this study, lintel beam type steel damper which is simple to construct and change depending on design load was proposed. Cyclic loading test was conducted to compare reinforced concrete coupling beam and lintel beam type steel damper. The test results showed that lintel beam type steel damper has higher initial stiffness and energy dissipation capacity than reinforced concrete coupling beam.

축방향으로 주행하는 현의 횡진동 제어 (Transverse Vibration Control of an Axially Moving String)

  • 류두현;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.579-584
    • /
    • 2000
  • In this study. the time varying boundary control using the right boundary transverse motion on the basis of the energy flux between the moving string and the boundaries is suggested to stabilize the transverse vibration of an axially moving string. The effectiveness of the active boundary control is showed through experimental results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. For the unmoving and moving string at various velocity under various tension the performance of the transverse vibration control using the time varying right boundary control with the suggested control scheme is experimentally demonstrated.

  • PDF

헌치로 보강된 철골모멘트 골조의 지진 응답: 사례연구 (Seismic Response of Haunch Repaired Steel MRFs: A Case Study)

  • 이철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.173-181
    • /
    • 1997
  • To investigate the effects of haunch repair on the system seismic performance of steel moment-resisting frames (steel MRFs), a case study was conducted for a 13-story frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 1.7% radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80%(for the Oxnard record) and 70%(for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.

  • PDF

접이식 차양장치에 관한 이론적 연구 (A Theoretical Study on a Folding Shading Device)

  • 백상훈;최원기;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제29권3호
    • /
    • pp.28-36
    • /
    • 2009
  • The majority of fixed shading devices are installed in the exterior of a building in order to dissipate the heat absorbing from the sun and to prevent the direct sunlight. In designing external shading devices for windows, many requirements must be considered simultaneously; solar geometry, optimum energy performance, multi-purpose usage and design factors etc.. In order Lo satisfy these requirements, we suggests the folding shading device and its optimum design methodology. Also we analyzed the thermal performance using the IES_VE program according to various operating modes and compared with existing shading devices. The results show that proposed device reduce about $1.90{\sim}22.40%$ in cooling load and about $1.09{\sim}24.22%$ in heating load in comparison with existing ones.

강판으로 보강된 비좌굴가새의 성능에 대한 해석적 연구 (An Analytical Study on the Performance of Buckling Restrained Brace Reinforced with Steel Plate)

  • 김대홍;김혁수;유정한
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.51-57
    • /
    • 2022
  • In this paper, based on the finite element analysis model verified in previous studies, a new model of a buckling restrained brace reinforced with a steel plate was proposed. A design formula was proposed for the new model to dissipate energy without buckling the steel core under load protocol, and the performance of the model satisfying the design formula was evaluated by comparing it with the previous model through the results of hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping.

다공 원반 CFD 모델을 이용한 풍력발전기 후류 해석 연구 (Wind Turbine Wake Model by Porous Disk CFD Model)

  • 신형기;장문석;방형준;김수현
    • 풍력에너지저널
    • /
    • 제4권1호
    • /
    • pp.68-74
    • /
    • 2013
  • Offshore wind farm is being increased since there are much trouble to develop onshore wind farm. But in the offshore, wind turbine wake does not dissipate less than onshore wind turbine because of low turbulence level. Thus this remained wake interacted to other wind turbine. This interaction reduces energy production in wind farm and have a bad influence on fatigue load of wind turbine. In this research, CFD model was constructed to analyze wake effect in offshore wind farm. A method that wind turbine rotor region was modelled in porous media was devised to reduce computation load and validated by comparison with Horns Rev measurement. Then wake interaction between two wind turbine was analyzed by devised porous model.

Earthquake effects on the energy demand of tall reinforced concrete walls with buckling-restrained brace outriggers

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.521-536
    • /
    • 2017
  • Reinforced concrete core-wall structures with buckling-restrained brace outriggers are interesting systems which have the ability to absorb and dissipate energy during strong earthquakes. Outriggers can change the energy demand in a tall building. In this paper, the energy demand was studied by using the nonlinear time history analysis for the mentioned systems. First, the structures were designed according to the prescriptive codes. In the dynamic analysis, three approaches for the core-wall were investigated: single plastic hinge (SPH), three plastic hinge (TPH) and extended plastic hinge (EPH). For SPH approach, only one plastic hinge is allowed at the core-wall base. For TPH approach, three plastic hinges are allowed, one at the base and two others at the upper levels. For EPH approach, the plasticity can extend anywhere in the wall. The kinetic, elastic strain, inelastic and damping energy demand subjected to forward directivity near-fault and ordinary far-fault earthquakes were studied. In SPH approach for all near-fault and far-fault events, on average, more than 65 percent of inelastic energy is absorbed by buckling-restrained braces in outrigger. While in TPH and EPH approaches, outrigger contribution to inelastic energy demand is reduced. The contribution of outrigger to inelastic energy absorption for the TPH and EPH approaches does not differ significantly. The values are approximately 25 and 30 percent, respectively.