• Title/Summary/Keyword: Display driver

Search Result 350, Processing Time 0.029 seconds

LVDS I/O Cells with Rail-to-Rail Input Receiver

  • Lim, Byong-Chan;Lee, Sung-Ryong;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.567-570
    • /
    • 2002
  • The LVDS (Low Voltage Differential Signaling) I/O cells, fully compatible with ANSI TIA/ EIA-644 LVDS standard, are designed using a 0.35${\mu}m$ standard CMOS technology. With a single 3V supply, the core cells operate at 1.34Gbps and power consumption of the output driver and the input receiver is 10. 5mW and 4.2mW, respectively. In the output driver, we employ the DCMFB (Dynamic Common-Mode FeedBack) circuit which can control the DC offset voltage of differential output signals. The SPICE simulation result of the proposed output driver shows that the variation of the DC offset voltage is 15.6% within a permissible range. In the input receiver, the proposed dual input stage with a positive feedback latch covers rail-to-rail input common-mode range and enables a high-speed, low-power operation. 5-channels of the proposed LVDS I/O pair can handle display data up to 8-bit gray scale and UXGA resolution.

  • PDF

Implementation of a Low Power and Reduced EMI Signaling Circuit For a LCD Controller-to-Source Driver Interface

  • Choi, Chul-Ho;Choi, Myung-Ryul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.167-168
    • /
    • 2000
  • We propose a signaling circuit that can reduce power consumption and Electromagnetic Interference (EMI) in a Liquid Crystal Display (LCD) controller-to-source driver interface. The proposed signaling circuit consists of a coder/decoder that can minimize temporal bit transitions in a transmission line and a current-mode driver that can convert voltage swing into a very small amount of current. We have simulated the proposed signaling circuit using the HSPICE and the proposed signaling circuit has been designed in a 0.25 ${\mu}m$ CMOS technology.

  • PDF

A Novel Energy Recovery Sustaining Driver with Snubber Circuits for Plasma Display Panel

  • Chen, Jyh-Wei;Lee, Chin-Yuan;Lu, Chien-Hung;Wang, Ssu-Hao;Hsia, Yi-Feng;Chang, Wei-Chun;Mo, Chi-Neng;Liu, Chia-Lin;Yang, Sung-Tse
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.635-638
    • /
    • 2005
  • An energy recovery sustaining driver with zero current switching to reduce switching losses and EMI is presented in this paper. The driver with designed snubber circuits reduces ringing voltage significantly on PDP so that the voltage rating of MOSFETs can be lower as well to reduce the cost of switches.

  • PDF

Design of a color control driver for liquid crystal on silicon (LCOS(Liquid Crystal On Silicon)를 위한 컬러 콘트롤 드라이버 설계)

  • 이범근;박남서;김재진
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • In this paper, we propose the hardware architecture of a scale converter which is to convert a variety range of scale into a target scale and a time sequential color control driver for LOCS (Liquid Crystal On Silicon) micro display devices which are considered advanced micro display technology in the next generation. The driver has been implemented and tested with ASIC chips.

  • PDF

A High-speed Level-shifter Circuit for Display Panel driver (디스플레이 구동을 위한 고속 레벨-쉬프터 회로)

  • Park, Won-ki;Cha, Cheol-ung;Lee, Sung-chul
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.657-658
    • /
    • 2006
  • A Novel level-shifter circuit for Display Panel Driver is presented. A Proposed level-shifter is for the high speed and high-voltage driving capability. In order to achieve this purpose, the proposed level-shifter restricts and separates the Vgs of the output driver's pull-up PMOS and pull-down NMOS with Zener diode. And a speed-up PMOS transistor is introduced to reduce delay. The control signal of speed-up PMOS was designed by bootstrapping method to minimize the gate to source (Vgs) voltage to avoid Vgs breakdown.

  • PDF

A gate driver circuit for IGZO TFTs driven by two clock signals

  • Kim, Yeon Kyung;Kim, Joon Dong;Lym, Hong Kyun;Kim, Sang Yeon;Oh, Hwan Sool;Park, Kee Chan
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.179-183
    • /
    • 2012
  • In this paper, a gate driver circuit for In-Ga-Zn-O thin-film transistors (TFTs) driven by only two clock signals is reported. In this circuit, the TFTs are turned off with a negative $V_{GS}$ by the two clock signals. As a result, it works properly and suppresses power consumption increase even though the TFT $V_T$ shifts in the negative direction.

Integrated DC-DC Converter Based Energy Recovery Sustainer Circuit for AC-PDP

  • Park, Jae-Sung;Shin, Yong-Saeng;Hong, Sung-Soo;Han, Sang-Kyoo;Roh, Chung-Wook
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.878-885
    • /
    • 2012
  • A new sustainer with primary-side integration of DC/DC converters and energy recovery(SPIDER) circuits is proposed. The proposed circuit operates as a DC-DC converter during address period and energy recovery circuit during sustain period. Therefore, the conventional three electronic circuits composed of the power supply, X-driver, and Y-driver can be reduced to one circuit. As a result, it has desirable advantages such as a simple structure, less mass, fewer devices and cost reduction. Moreover, since the Zero Voltage Switching (ZVS) of all power switches can be guaranteed, a switching loss can be considerably decreased. To confirm the operation, validity, and features of the proposed circuit, experimental results from a prototype for 42-inch PDP are presented.

Analysis and Design of a High-Efficiency Boundary Conduction Mode Tapped-Inductor Boost LED Driver for Mobile Products

  • Kang, Jeong-Il;Han, Sang-Kyoo;Han, Jonghee
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.632-640
    • /
    • 2014
  • For low-power high-frequency LED driver applications in small form factor mobile products, a high-efficiency boundary conduction mode tapped-inductor boost converter is proposed. In the proposed converter, the switch and the diode achieve soft-switching, the diode reverse-recovery is alleviated, and the switching frequency is very insensitive to output voltage variations. The circuit is quantitatively characterized, and the design guidelines are presented. Experimental results from an LED backlight driver prototype for a 14 inch notebook computer are also presented.

Comparative Study on a Single Energy Recovery Circuits for Plasma Display Panels (PDPs)

  • Yi, Kang-Hyun;Choi, Seong-Wook;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.159-162
    • /
    • 2007
  • Comparative study on a low cost sustaining driver with single and dual path energy recovery circuits for plasma display panels (PDPs) is shown in this paper. The cost of PDPs has been still high and about half of the cost has been occupied by driving circuit. A simple sustaining driver is proposed to reduce the cost and size of driving circuit. The proposed driver has small number of devices and reactive components and there are two methods for charging and discharging PDPs such as single and dual path energy recovery circuits. A comparative research on two-types of energy recovery path is practiced to evaluate performance. As a result, the dual energy recovery path circuit has low power consumption, low surge current and high performance. To verify those results, experiment will be shown with 42-inch HD panel.

  • PDF

Design And Implementation of a Novel Sustain Driver for Plasma Display Panel

  • Agarwal Pankaj;Kim Woo-Sup;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.403-405
    • /
    • 2006
  • Over the years, plasma display panel (PDP) manufacturers have impressed the flat panel display industry with yet another new product essentially having the merits of a larger screen size. Since larger size implies higher power ratings, voltage/current ratings of the power devices used have become a rising concern. Another important concern is the brightness of PDP, one way of increasing which is by operating the PDP at higher frequencies. In order to address the above issues, a transformer coupled sustain-driver for AC-PDP is proposed During the transition time, the two windings of the transformer greatly boost up the displacement current flowing through the panel capacitance and hence enable a fast inversion of the voltage polarity with practical values of resonant inductance. In the proposed topology, the resonant inductance can be increased by a factor of $(n+1)^2$ as compared to prior approaches. Increased inductance results in lower current stresses. Moreover, high frequency operation is possible by using higher value of n (turn ratio of the transformer). The operational principle and design procedure of the proposed circuit are presented with theoretical analysis. The validity of the proposed sustain driver is established through simulation and experimental results using a 42-in PDP

  • PDF