• Title/Summary/Keyword: Display driver

Search Result 350, Processing Time 0.028 seconds

Amorphous Silicon Gate Driver with High Stability

  • Koo, Ja-Hun;Choi, Jae-Won;Kim, Young-Seoung;Kang, Moon-Hyo;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1271-1274
    • /
    • 2006
  • Integrated a-Si:H gate driver with high reliability has been designed and simulated. The proposed a-S:H gate driver has only one reset transistor under AC driving for P and output node. These reset transistors show much less degradation than those under DC driving. The simulation results show that the lifetime and response time are improved significantly compared with those of the prior circuit.

  • PDF

The Method of 3D Information Display for Automobile HUD (차량용 HUD를 위한 3차원 정보표시의 방법)

  • Ryu, Ji-Hyoung;Choi, Sung-Won;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.12-16
    • /
    • 2011
  • Most car accidents occur when the driver does not look at the lane. Specially When the driver needs to find the path through the navigation, the driver have to look the other site. The number of such accidents can be prevented, if the driver receives the information without gazing other spot during the car is running. HUD (Head-Up Display) Technology, developed for enhancing the combat effectiveness and pilot's visibility in fighter, is applied to luxury cars for the safe operation of the driver. In recent years, the simple speed, lubrication status etc., as well as navigation information also shows through HUD. HUD is expected to increase in the future. But these HUD show the information elsewhere in the driver's eye focus. It is necessary to focus on the windshield for a few msec to check the information. In this paper, Introduced method display the HUD information in 3D as well as in similar distance the driver's eye focus so that the driver can operate the car more safely.

Development of Driver IC on TFT-based Liquid Crystal Display

  • Pan, Po-Chuan;Koo, Horng-Show
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.381-384
    • /
    • 2005
  • Driver IC is one of the key components on the LCD monitor and LCD/TV. The function of the driver IC is to transfer and forward the input signals to LCD panel module. Inside driver IC, there are several operating units which process the input signals and generate the appropriate size and resolution to the LCD panel module. LCD panel module will display these input signals. However, there are some difficulties which driver IC designer, LCD monitor and LCD/TV maker will face. Thus, this article addresses the function and difficulties on driver IC.

  • PDF

Design and Implementation of a Wearable LED Display Device

  • Shin, Seung-Hyeok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.7-13
    • /
    • 2015
  • Wearable device, next generation smart device, is consistently growing. The flexible display will be a kind of display in the wearable device. The flexible display technology is now evolving with end-user requirement such as portability and easy installation. Previous wearable display products still have some difficulties in manufacturing and in flexibility whole device. But it can be a flexible display with LED device and utilized in commercial area. In this paper, we propose a driver to control the LED display and implement a flexible LED display system.

ASG(Amorphous Silicon TFT Gate driver circuit) Technology for Mobile TFT-LCD Panel

  • Jeon, Jin;Lee, Won-Kyu;Song, Jun-Ho;Kim, Hyung-Guel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.395-398
    • /
    • 2004
  • We developed an a-Si TFT-LCD panel with integrated gate driver circuit using a standard 5-MASK process. To minimize the effect of the a-Si TFT current and LC's capacitance variation with temperature, we developed a new a-Si TFT circuit structure and minimized coupling capacitance by changing vertical architecture above gate driver circuit. Integration of gate driver circuit on glass substrate enables single chip and 3-side free panel structure in a-Si TFT-LCD of QVGA(240$^{\ast}$320) resolution. And using double ASG structure the dead space of TFT-LCD panel could be further decreased.

  • PDF

A Study on the Design of the Source Driver and the Flexible Display with an Electrowetting Cell Structure (전기습윤셀 구조를 갖는 플렉서블 디스플레이와 소스 드라이버 설계에 관한 연구)

  • Kim, Hoon-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.149-156
    • /
    • 2012
  • The Fabric Electrode was proposed for the effective production of the display based on electrowetting in this paper and designed the source driver of flexible display which could be driven by the electrowetting cell. The electrowetting cell matrix was implemented on the substrate(PET) by imprinting. The driver fabric, wetting electrode fabric and conductive fabric was placed horizontally and vertically in the groove between cell matrix and the electrowetting cell matrix can be driven by the cross-point as electric connection. The integration density of driver module is decreased because using the R/2R DAC module per channel in the conventional method. The proposed method could utilize the effective production process and reduce the production price of a display panel. The source driver which consume lower power and can increase the integration density because of reducing the number of driver device per channel was designed and evaluate the driver operation by the simulation using the VHDL programming in this paper.

Human Sensibility Ergonomics Evaluation of the Car Navigation System Digital Map (자동차 항법장치 도로지도의 감성공학적 평가에 관한 연구)

  • Cha, Doo-Won;Paek, Seung-Reu;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.101-111
    • /
    • 1998
  • CNS (Car Navigation System) is the most compatible candidate among various in-vehicle information systems as a provider of ITS (Intelligence Transport Systems) information. It generally consists of remote controller, display, CD-changer, GPS receiver and so on. Among them, display is the most important and critical element of the HMI (Human-Machine Interface) suggesting the digital map to the driver. Therefore, it is certain that the display gives cognitive, physical, mental and visual workloads to the driver which are directly related with the driver's and road safety with the success of ITS. Until now, various human factors techniques have been developed and applied to estimate the driver's workload and to collect the driver's requirements of the CNS digital map, for example, mental workload assessment, visual activity analysis, cognitive analysis and so on. In addition to these kinds of techniques, this research performed the human sensibility ergonomics approach to directly investigate and evaluate the driver's requirements and sensibilities of the real products.

  • PDF

Ultra-High Resolution and Large Size Organic Light Emitting Diode Panels with Highly Reliable Gate Driver Circuits

  • Hong Jae Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • Large-size, organic light-emitting device (OLED) panels based on highly reliable gate driver circuits integrated using InGaZnO thin film transistors (TFTs) were developed to achieve ultra-high resolution TVs. These large-size OLED panels were driven by using a novel gate driver circuit not only for displaying images but also for sensing TFT characteristics for external compensation. Regardless of the negative threshold voltage of the TFTs, the proposed gate driver circuit in OLED panels functioned precisely, resulting from a decrease in the leakage current. The falling time of the circuit is approximately 0.9 ㎲, which is fast enough to drive 8K resolution OLED displays at 120 Hz. 120 Hz is most commonly used as the operating voltage because images consisting of 120 frames per second can be quickly shown on the display panel without any image sticking. The reliability tests showed that the lifetime of the proposed integrated gate driver is at least 100,000 h.

Comparison of map display styles of vehicle navigation system on human factors (차량 항법장치의 화면표시형태에 대한 인간공학적 비교)

  • Jung, Beom-Jin;Baek, Seung-Ryul;Kim, Gi-Beom;Park, Beom
    • Proceedings of the ESK Conference
    • /
    • 1995.10a
    • /
    • pp.208-213
    • /
    • 1995
  • The vehicle navigation system is developed for helping driver to retrieve driving information more easily and lastly. Navigation System informs driver many pieces of driving information - roadway structure and system, on-line traffic condition, the position of vehicle, route guidance, destination and other infor- mation service. As the style of information is diverse and the amount of information is large, driver may have mental and visual overload. The display of information can disturb the driver's attention and this can cause accidents. This state is caused by the defect of human-machine interactions. When the navigation system is designed, human factors - cognitive, judgment, operating -must be considered. The display style must be designed simply and easily, not to be obstacle of human - machine interface. In this study, outside- in view display style and inside-out view display style are compared each other. Tow factors are measured. One is cognitive factor-time of cognition on information that is displayed by screen display, cognition error rate. The other is image of screen display - subject's feeling about several styles of display, degree of subject's preference. The prototype of roadway is four kinds -Cross, T-cross and O-cross. Roadway display for test is taken from paper maps. Traffic condition display style, vehicle position display style and route guidance display style are taken from current display style. Traffic condition display style is symbol. vehicle position display style and route guidance display style are described as color and symbol. The test on screen display is implemented doing given tasks. Then the test is analyzed statistically. The result of test analysis gives the guideline to the designer for the map display of the vehicle navigation system.

  • PDF

Comparison of Map Display Styles of Vehicle Navigation System on Human Factors (자동차 항법장치의 화면표시형태에 대한 인간공학적 비교)

  • Jeong, Peom-Jin;Paek, Sung-Lyeol;Kim, Ki-Peom;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.49-59
    • /
    • 1995
  • The vehicle navigation system is developed for helping driver to retrieve driving information more easily and fastly. Navigation System informs driver many pieces of driving information - roadway structure and system, on-line traffic condition, the position of vehicle, route guidance, destination and other information service. As the style of information is diverse and the amount of information is large, driver may have mental and visual overload. The display of information can disturb the driver's attention and this can cause accidents. This state is caused by the defect of human-machine interactions. When the navigation system is designed, human factors - cognitive, judgment, operating - must be considered. The display style must be designed simply and easily, not to be obstacle of human -machine interface. In this study, outside-in view display style and inside-out view display style are compared each other. Two factors are measured. One is cognitive factor-time of cognition on information that is displayed by screen display, cognition error rate. The other is image of screen display - subject's feeling about several styles of display, degree of subject's preference. The prototype of roadway is four kinds - Cross, T-cross, Y-cross and O-cross. Roadway display for test is taken from paper maps. Traffic condition display style, vehicle position display style and route guidance display style are taken from current display style. Traffic condition display style is symbol. Vehicle position display style and route guidance display style are described as color and symbol. The test on screen display is implemented doing given tasks. Then the test is analyzed statistically, The result of test analysis gives the guideline to the designer for the map display of the vehicle navigation system.

  • PDF