• Title/Summary/Keyword: Display and Modeling

Search Result 309, Processing Time 0.029 seconds

Framework for Reconstructing 2D Data Imported from Mobile Devices into 3D Models

  • Shin, WooSung;Min, JaeEun;Han, WooRi;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.6-9
    • /
    • 2021
  • The 3D industry is drawing attention for its applications in various markets, including architecture, media, VR/AR, metaverse, imperial broadcast, and etc.. The current feature of the architecture we are introducing is to make 3D models more easily created and modified than conventional ones. Existing methods for generating 3D models mainly obtain values using specialized equipment such as RGB-D cameras and Lidar cameras, through which 3D models are constructed and used. This requires the purchase of equipment and allows the generated 3D model to be verified by the computer. However, our framework allows users to collect data in an easier and cheaper manner using cell phone cameras instead of specialized equipment, and uses 2D data to proceed with 3D modeling on the server and output it to cell phone application screens. This gives users a more accessible environment. In addition, in the 3D modeling process, object classification is attempted through deep learning without user intervention, and mesh and texture suitable for the object can be applied to obtain a lively 3D model. It also allows users to modify mesh and texture through requests, allowing them to obtain sophisticated 3D models.

θz Stage Design and Control Evaluation for Wafer Hybrid Bonding Precision Alignment (Wafer Hybrid Bonding 정밀 정렬을 위한 θz 스테이지 설계 및 제어평가)

  • Mun, Jea Wook;Kim, Tae Ho;Jeong, Yeong Jin;Lee, Hak Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.119-124
    • /
    • 2021
  • In a situation where Moore's law, which states that the performance of semiconductor integrated circuits doubles every two years, is showing a limit from a certain point, and it is difficult to increase the performance due to the limitations of exposure technology.In this study, a wafer hybrid method that can increase the degree of integration Various research on bonding technology is currently in progress. In this study, in order to achieve rotational precision between wafers in wafer hybrid bonding technology, modeling of θz alignment stage and VCM actuator modeling used for rotational alignment, magnetic field analysis and desgin, control, and evaluation are performed. The system of this study was controlled by VCM actuator, capactive sensor, and dspace, and the working range was ±7200 arcsec, and the in-position and resoultion were ±0.01 arcsec. The results of this study confirmed that safety and precise control are possible, and it is expected to be applied to the process to increase the integration.

Impedance Estimation for Lithium Secondary Battery According to 1D Thermal Modeling (리튬 2차 전지의 1차원 열적 특성을 고려한 임피던스예측)

  • Lee, Jung-Su;Lim, Geun-Wook;Kim, Kwang-Sun;Cho, Hyun-Chan;Yoo, Sang-Gil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.13-17
    • /
    • 2008
  • In this paper, in order to get the characteristics of the lithium secondary cell, such as charge and discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc, we build a thermal model that estimate the impedance of battery by experiment & simulation. In this one-dimensional model, Seven governing equations are made to solve seven variables c, $c_s,\;\Phi_1,\;\Phi_2,\;i_2$, j and T. The thermal model parameters used in this model have been adjusted according to the experimental data measured in the laboratory. The result(Voc, Impedance) of this research can be used in BMS(Battery Management System), so an efficient method of using battery is developed.

  • PDF

Mechanical Modeling of Pen Drop Test for Protection of Ultra-Thin Glass Layer (초박형 유리층 보호를 위한 펜 낙하 시험의 기계적 모델링)

  • Oh, Eun Sung;Oh, Seung Jin;Lee, Sun-Woo;Jeon, Seung-Min;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.49-53
    • /
    • 2022
  • Ultra-thin glass (UTG) has been widely used in foldable display as a cover window for the protection of display and has a great potential for rollable display and various flexible electronics. The foldable display is under impact loading by bending and touch pen and exposed to other external impact loads such as drop while people are using it. These external impact loads can cause cracks or fracture to UTG because it is very thin under 100 ㎛ as well as brittle. Cracking and fracture lead to severe reliability problems for foldable smartphone. Thus, this study constructs finite element analysis (FEA) model for the pen drop test which can measure the impact resistance of UTG and conducts mechanical modeling to improve the reliability of UTG under impact loading. When a protective layer is placed to an upper layer or lower layer of UTG layer, stress mechanism which is applied to the UTG layer by pen drop is analyzed and an optimized structure is suggested for reliability improvement of UTG layer. Furthermore, maximum principal stress values applied at the UTG layer are analyzed according to pen drop height to obtain maximum pen drop height based on the strength of UTG.

Enhancement of the Virtual Metrology Performance for Plasma-assisted Processes by Using Plasma Information (PI) Parameters

  • Park, Seolhye;Lee, Juyoung;Jeong, Sangmin;Jang, Yunchang;Ryu, Sangwon;Roh, Hyun-Joon;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.132-132
    • /
    • 2015
  • Virtual metrology (VM) model based on plasma information (PI) parameter for C4F8 plasma-assisted oxide etching processes is developed to predict and monitor the process results such as an etching rate with improved performance. To apply fault detection and classification (FDC) or advanced process control (APC) models on to the real mass production lines efficiently, high performance VM model is certainly required and principal component regression (PCR) is preferred technique for VM modeling despite this method requires many number of data set to obtain statistically guaranteed accuracy. In this study, as an effective method to include the 'good information' representing parameter into the VM model, PI parameters are introduced and applied for the etch rate prediction. By the adoption of PI parameters of b-, q-factors and surface passivation parameters as PCs into the PCR based VM model, information about the reactions in the plasma volume, surface, and sheath regions can be efficiently included into the VM model; thus, the performance of VM is secured even for insufficient data set provided cases. For mass production data of 350 wafers, developed PI based VM (PI-VM) model was satisfied required prediction accuracy of industry in C4F8 plasma-assisted oxide etching process.

  • PDF

A Study on Attractive Force Characteristics of Glass Substrate Using Alumina Electrostatic Chuck by Finite Element Analysis (유한요소해석을 이용한 알루미나 정전척의 글라스 기판 흡착 특성 연구)

  • Lee, Jae Young;Jang, Kyung Min;Min, Dong Kyun;Kang, Jae Gyu;Sung, Gi Hyun;Kim, Hye Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.46-50
    • /
    • 2020
  • In this research, the attractive force of Coulomb type electrostatic chuck(ESC), which consisted of alumina dielectric, on glass substrate was studied by using the finite element analysis. The attractive force is caused by the high electrical resistance which occurs in contact region between glass substrate and dielectric layer. This research tries the simple geometrical modeling of ESC and glass substrate with air gap. The influences of the applied voltage, and air gap are investigated. When alumina dielectric with 1014 Ω·cm, 1.5 kV voltage, and 0.01 mm air gap were applied, electrostatic force in this work reached to 4 gf/㎠. This results show that the modeling of air gap is essential to derive the attractive force of the ESC.

Development of Machine Learning Model of LTPO Devices (LTPO 소자의 머신 러닝 모델 개발)

  • Jungsoo Eun;Jinsoo Ahn;Minseok Lee;Wooseok Kwak;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.179-184
    • /
    • 2023
  • We propose the modeling methodology of CMOS inverter made of LTPO TFT using a machine learning. LTPO can achieve advantages of LTPS TFT with high electron mobility as a driving TFT and IGZO TFT with low off-current as a switching TFT. However, since the unified model of both LTPS and IGZO TFTs is still lacking, it is necessary to develop a SPICE-compatible compact model to simulate the LTPO current-voltage characteristics. In this work, a generic framework for combining the existing formula of I-V characteristics with artificial neural network is presented. The weight and bias values of ANN for LTPS and IGZO TFTs is obtained and implemented into PSPICE circuit simulator to predict CMOS inverter. This methodology enables efficient modeling for predicting LTPO TFT circuit characteristics.

  • PDF

Effect of the Observation of an Audio-Visual Modeling on the Rehabilitation of Upper Limb Function in Stroke Patients (시청각적 모델링의 관찰이 뇌졸중 환자의 상지기능 재활에 미치는 영향)

  • Park, Sang-Bum;Kim, Mi-Hyun
    • Physical Therapy Korea
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • The purpose of this experiment was to investigate the applicability of audio-visual modeling for improving the efficiency of rehabilitative programs by analyzing the effects of observing these various models on the capacity of stroke patients to perform upper limb activities. Twenty-one stroke patients participated in the experiment and were randomly assigned to either task modeling, sport modeling, or control group. During 2 weeks of intervention, subjects in all groups participated in the physical practice of experimental tasks. These tasks comprised of a Nine Hole Peg Test, the Jebsen-Taylor Hand Function tests, and locomotion. These tasks were performed 5 days a week, 30 min per day. In addition to the physical practice, the task modeling group observed a model performing experimental tasks and locomotive activities for 20 min, while the sport modeling group observed a model performing various sport activities for 20 min. Subjects' ability to perform the experimental tasks was measured 3 times, before, immediately after, and 1 week after the intervention. Analyses of the capacity to perform upper extremity activities displayed significant improvement from the pre-test to immediate and delayed post-tests in all groups. However, the amount of improvement was the highest in the task modeling group. The task modeling group was superior to the control group in the post-test of all experimental tasks, whereas the sport modeling group did not display significant differences from the control group. These results suggest that audio-visual modeling can be used as an effective cognitive intervention for facilitating the rehabilitation of stroke patients, and its rehabilitative effect can be maximized when the program is comprised of performance scenes directly related to the target task.

  • PDF

Modeling of Ultrasonic Testing in Butt Joint by Ray Tracing

  • Nam, Young-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.441-447
    • /
    • 2001
  • Ultrasonic wave generation and propagation were modeled to simulate an ultrasonic test. A ray model was used for the modeling. Actual sound pressure distribution of the incident wave from an angle probe was analyzed using an ultrasonic visualization method to incorporate the actual sound pressure distribution in the model. In this method, the sound pressure was expressed by the density of rays and the reflection coefficient of ultrasonic beams. Reflection and mode conversion of rays were computed by the Snells law. Simulation programs for the problem of ultrasonic testing of a butt joint are built using this ray modeling. Simulation results for ultrasonic wave scattering from a defect and A-scan display in ultrasonic testing agreed with the actual experiment results.

  • PDF

Relationship among Dominant Design Determinant Factors, Product Core Elements and Dominant Digital TV (지배적 디자인 결정요인, 제품 핵심요소 및 지배적 디지털 TV간 관계)

  • Chang, Chunsoo;Cho, Keuntae
    • Journal of Technology Innovation
    • /
    • v.23 no.4
    • /
    • pp.177-203
    • /
    • 2015
  • The objective of the study is to identify the relationship among dominant design determinant factors, product core elements and digital TV. For that, this study uses structural equation modeling through a questionnaire. As a result, dominant design determinant factors effect on product core element such as display, design, characters while display and design influence on dominant digital TV. The study is expected for our TV firms to utilize our research as basic data to build their strategy so as to keep as first movers forever.