• 제목/요약/키워드: Displacement of Center of Gravity

검색결과 48건 처리시간 0.022초

테니스 플랫 서브 동작의 운동학적 분석 (The Kinematic Analysis of the Tennis Flat Serve Motion)

  • 오정환;최수남;남택길
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.97-108
    • /
    • 2006
  • C. H. OH, S. N. CHOI, T. G. NAM, The Kinematic Analysis of the Tennis Flat Serve Motion, Korean Jiurnal of Sports Biomechanics, Vol. 16, No. 2, pp. 97-108, 2006. By the comparison and the analysis of the different factors during the tennis flat serve motion such as the required time per section, the movement displacement of the racket, the velocity of the upper limbs joints, the physical center of gravity, and the angle and the angular velocity of the upper limbs joints between an ace player and a mediocre player, these following results were drawn. First, the experiment result of the total time required per section in a tennis flat serve motion showed that an ace player was faster than a mediocre player by 0.4 seconds. This result suggested that it was required to increase the speed of the racket head by a swift swing to perform an effective flat serve motion. Second, the experiment result of the movement displacement of the racket in the tennis flat serve motion showed that an ace player greatly moved toward the left side on an x-axis. But both an ace and a mediocre player were shown to be at the similar points on a y-axis at the moment of the impact of the racket. An ace player was also shown to be located at a higher position on a z-axis by 0.23m. Third, the velocity of the center of gravity of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fourth, the velocity of the upper limb joints of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fifth, the experiment result of the speed of the racket head in tennis flat serve motion showed that a mediocre player was faster than an ace player in the first phase, but the latter was faster than the former in the second, third, and the fourth phases. Sixth, at the moment of impact of a tennis flat serve, an ace player had greater flexion of the angle of the wrist joints by an 11.8 degree than a mediocre player. An ace player also had greater extension of the angle of the elbow joint and the shoulder joint respectively by a 5.2 degree and a 1.4 degree with a mediocre player. Seventh, an ace player had greater angular velocity of the upper limb joints and the hip joints than a mediocre player at the moment of the impact of tennis flat serve. Eighth, an ace player was shown to have a greater change of the forward and the backward inclination (or the anterior and posterior inclination) of the upper body

국내 중력식 안벽의 수평지진계수 산정 방법에 대한 고찰 (A Discussion on the Definitions of Seismic Coefficient for Gravity Quay Wall in Korea)

  • 이문교;조성배;조형익;박헌준;김동수
    • 한국지진공학회논문집
    • /
    • 제21권2호
    • /
    • pp.77-85
    • /
    • 2017
  • Pseudo-static approach has been conventionally applied for the design of gravity quay walls. In this method, the decision to select an appropriate seismic coefficient ($k_h$) is an important one, since $k_h$ is a key variable for computing an equivalent pseudo-static inertia force. Nonetheless, there is no unified standard for defining $k_h$. Likewise, port structure designers in Korea have a difficulty in choosing an appropriate $k_h$ definition, as there are conflicts in how $k_h$ is defined between the existing seismic code of port structures and the proposed new one. In this research, various seismic design codes for port structures were analyzed to compare the definitions of the seismic coefficient. The results were used for the proposing a unified seismic coefficient definition. Further, two dynamic centrifuge tests were performed with different wall heights (5 m, 15 m) to clarify the reference point of peak acceleration used in determination of $k_h$ according to the wall height. Results from dynamic centrifuge experiments showed that correction factors for the peak ground acceleration considering both the wall height and allowable displacement are needed to calculate $k_h$.

경근(經筋)과 인체 시상균형에 관한 소고(小考) (Meridian Sinews and Sagittal Spinal Balance)

  • 남동현;신상훈
    • 대한한의진단학회지
    • /
    • 제13권2호
    • /
    • pp.129-139
    • /
    • 2009
  • Sagittal spinal balance means standing postural balance at sagittal plane. Postural imbalance with displacement of the patient's center of gravity can cause chronic back pain and ambulatory difficulty. The sagittal spinal balance is determined based on the deviation of the C7 plumb line, originating at the middle of the C7 vertebral body, from the posterior superior endplate of S1. The line is called as sagittal vertical axis (SVA). In the traditional Korean medicine, the meridian sinews, which are the most superficial pathways of the meridian system, associated with movement, muscle balance and defense. They too are separate from the main meridians, though they intersect the main meridians. Some creative and pioneer researchers in Korea thought that the anatomy trains, which suggested by Myers is a concept familiar to the meridian sinews. A reciprocal relationship between the superficial back line and the superficial front line used to be compared to the rigging of a sailboat. Therefore, We suggest that spine may be compared to a mast of the sailboat and that the sagittal spinal balance can be maintained with systemic reciprocal interacts between the front line muscles and the back.

  • PDF

면진 장치 적용 전, 후의 철골조의 내진 성능 평가 (Evaluation of Seismic Performance of Steel Frame before and after Application of Seismic Isolator)

  • 김대곤;이상훈;안재현;박칠림
    • 한국지진공학회논문집
    • /
    • 제2권1호
    • /
    • pp.47-62
    • /
    • 1998
  • 내진 설계되지 않은 일경간-이층 철골조의 면진에 사용될 적층 고무베어링과 납-고무 베어링을 설계하여 철골조와 기초 사이에 이 면진장치들을 적용하여 지진파들에 대한 내진 성능 평가를 행하였다. 이들 면진장치들을 사용하면 철골조의 내진성능이 향상된다. 특히 적층 고무베어링의 중앙에 원통형 납을 삽입함으로써 초기강성을 증가시켜, 빈번한 사용하중 하에서 구조물에 발생하는 비교적 과도한 횡변위를 구속할 수 있으며, 강한 지진파에 대해서는 이 납이 항복함으로써 에너지 소산능력을 향상시킨다.

  • PDF

뇌졸중 환자의 탄력-비탄력 발목 테이핑 적용이 자세균형과 보행능력에 미치는 일시적 효과 (Immediate Effect of Elastic and Non-Elastic Ankle Taping on Postural Balance and Gait Ability in Subject with Stroke )

  • 유요한;한진태
    • 대한물리치료과학회지
    • /
    • 제30권1호
    • /
    • pp.52-61
    • /
    • 2023
  • Background: The purpose of this study was to investigate the immediate effects of ankle elastic and non-elastic taping on postural balance and gait ability in subject with stroke. Design: Cross-sectional study Methods: Twenty-seven subjects with stroke participated in this study. The subjects performed to stand quietly for 30s on the balance platform and walking test with three different ankle taping conditions. The sway length, sway area and sway velocity of center of gravity (COG) displacement was measured to assess the postural balance and the timed up and go test, 10m walking test, 6 minutes walking test was measured to assess the gait ability. Repeated measured ANOVA was used to compare the postural balance parameters and gait ability according to three different ankle taping conditions. Results: Postural balance with non-elastic ankle taping was significantly improved compared to no ankle taping and elastic ankle taping condition(p<0.05). On the other hand, gait ability with elastic ankle taping was significantly increased compared to no ankle taping and non-elastic ankle taping condition(p<0.05). Conclusion: These findings suggest that an elastic ankle taping could effect to improve the gait ability, whereas a non-elastic ankle taping could effect to improve the postural balance in subject with stroke.

The Mechanism Study of Gait on a Load and Gender Difference

  • Ryew, Checheong;Hyun, Seunghyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권1호
    • /
    • pp.47-53
    • /
    • 2021
  • Gait kinematics and kinetics have a similar tendency between men and women, yet it remains unclear how walking while carrying a load affects the gait mechanism. Twenty adults walked with preferred velocity on level ground of 20 m relative to change of a load carriage (no load, 15%, 30% of the body weights) aimed to observe gait mechanism. We measured gait posture using the three-dimensional image analysis and ground reaction force system during stance phase on left foot. In main effect of gender difference, men showed increased displacement of center of gravity (COG) compared to women, and it showed more extended joint angle of hip and knee in sagittal plane. In main effect of a load difference, knee joint showed more flexed postuel relative to increase of load carriage. In main effect of load difference on the kinetic variables, medial-lateral force, anterior-posterior force (1st breaking, 2nd propulsive), vertical force, center of pressure (COP) area, leg stiffness, and whole body stiffness showed more increased values relative to increase of load carriage. Also, men showed more increased COP area compared to women. Interaction showed in the 1st anterior-posterior force, and as a result of one-way variance analysis, it was found that a load main effect had a greater influence on the increase in the magnitude of the braking force than the gender. The data in this study explains that women require little kinematic alteration compared to men, while men in more stiff posture accommodate an added load compared to women during gait. Additionally, it suggests that dynamic stability is maintained by adopting different gait strategies relative to gender and load difference.

체감형 스키 시뮬레이터 개발을 위한 플루크보겐 동작의 운동역학적 비교 (Comparisons of Pflugbogen's Biomechanical Characteristics to Develop Interactive Ski Simulator)

  • 구도훈;이민현;권효순;현보람;은선덕
    • 한국운동역학회지
    • /
    • 제24권3호
    • /
    • pp.189-199
    • /
    • 2014
  • The purpose of this study was to compare pflugbogen's biomechanical characteristics between on the ski simulator and snowed ski slope to develop interactive ski simulator. Nine ski instructors(sex: male, age: $29.6{\pm}5.4yrs$, height: $176.0{\pm}5.6cm$, body mass: $76.0{\pm}14.0kg$) belong to Korean Ski Instructors Association participated in this research. 24 Infrared cameras for snowed ski slope experiment and 13 infrared camera for ski simulator experiment were installed near by path of pflugbogen. The participants did pflugbogen on the snowed ski slope and the ski simulator both. During the experiment, the participants weared motion capture suit with infrared reflective makers on it, and plantar pressure sensors in ski boots, so that ski motion and plantar pressure data were collected together. Displacement of COG(center of gravity) movements, trunk flexion/extension angle, adduction/abduction angle, and plantar pressure data were significantly different between on the simulator and ski slope. However, percentage of time of COG movement in the phases during medial/lateral and anterior/posterior movement were not significantly different. Findings indicate that the difference between two groups occurred because the ski simulator's drive mechanism is different from ski motion on the slope. In order to develop the ski simulator more interactively for pflugbogen, the ski simulator's drive mechanism need to be reflected 3D motion data of pflugbogen on the slope that were purposed in this research.

디지털 이미지 처리와 강형식 기반의 무요소법을 융합한 시험법의 모서리 점과 이미지 해상도의 영향 분석 (Analysis of the Effect of Corner Points and Image Resolution in a Mechanical Test Combining Digital Image Processing and Mesh-free Method)

  • 박준원;정연석;윤영철
    • 한국전산구조공학회논문집
    • /
    • 제37권1호
    • /
    • pp.67-76
    • /
    • 2024
  • 본 논문에서는 역학적 변수들을 측정하는 방안으로 디지털 이미지 프로세싱과 강형식 기반의 MLS 차분법을 융합한 DIP-MLS 시험법을 소개하고 추적점의 위치와 이미지 해상도에 대한 영향을 분석하였다. 이 방법은 디지털 이미지 프로세싱을 통해 시료에 부착된 표적의 변위 값을 측정하고 이를 절점만 사용하는 MLS 차분법 모델의 절점 변위로 분배하여 대상 물체의 응력, 변형률과 같은 역학적 변수를 계산한다. 디지털 이미지 프로세싱을 통해서 표적의 무게중심 점의 변위를 측정하기 위한 효과적인 방안을 제시하였다. 이미지 기반의 표적 변위를 이용한 MLS 차분법의 역학적 변수의 계산은 정확한 시험체의 변위 이력을 취득하고 정형성이 부족한 추적 점들의 변위를 이용해 mesh나 grid의 제약 없이 임의의 위치에서 역학적 변수를 쉽게 계산할 수 있다. 개발된 시험법은 고무 보의 3점 휨 실험을 대상으로 센서의 계측 결과와 DIP-MLS 시험법의 결과를 비교하고, 추가적으로 MLS 차분법만으로 시뮬레이션한 수치해석 결과와도 비교하여 검증하였다. 이를 통해 개발된 기법이 대변형 이전까지의 단계에서 실제 시험을 정확히 모사하고 수치해석 결과와도 잘 일치하는 것을 확인하였다. 또한, 모서리 점을 추가한 46개의 추적점을 DIP-MLS 시험법에 적용하고 표적의 내부 점만을 이용한 경우와 비교하여 경계 점의 영향을 분석하였고 이 시험법을 위한 최적의 이미지 해상도를 제시하였다. 이를 통해 직접 실험이나 기존의 요소망 기반 시뮬레이션의 부족한 점을 효율적으로 보완하는 한편, 실험-시뮬레이션 과정의 디지털화가 상당한 수준까지 가능하다는 것을 보여주었다.

3D printing of multiple container models and their trajectory tests in calm water

  • Li, Yi;Yu, Hanqi;Smith, Damon;Khonsari, M.M.;Thiel, Ryan;Morrissey, George;Yu, Xiaochuan
    • Ocean Systems Engineering
    • /
    • 제12권2호
    • /
    • pp.225-245
    • /
    • 2022
  • More and more shipping containers are falling into the sea due to bad weather. Containers lost at sea negatively affect the shipping line, the trader and the consumer, and the environment. The question of locating and recovering dropped containers is a challenging engineering problem. Model-testing of small-scaled container models is proposed as an efficient way to investigate their falling trajectories to salvage them. In this study, we first build a standard 20-ft container model in SOLIDWORKS. Then, a three-dimensional (3D) geometric model in the STL (Standard Tessellation Language) format is exported to a Stratasys F170 Fused Deposition Modeling (FDM) printer. In total, six models were made of acrylonitrile styrene acrylate (ASA) and printed for the purpose of testing. They represent three different loading conditions with different densities and center of gravity (COG). Two samples for each condition were tested. The physical models were dropped into the towing tank of University of New Orleans (UNO). From the experimental tests, it is found that the impact of the initial position after sinking can cause a certain initial rolling velocity, which may have a great impact on the lateral displacement, and subsequently affect the final landing position. This series of model tests not only provide experimental data for the study of the trajectory of box-shape objects but also provide a valuable reference for maritime salvage operations and for the pipeline layout design.

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

  • Kim, Dong Jin;Kim, Sun Young;You, Young Jun;Rhee, Key Pyo;Kim, Seong Hwan;Kim, Yeon Gyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.161-177
    • /
    • 2013
  • High-speed vessels require good resistance and seakeeping performance for safe operations in rough seas. The resistance and seakeeping performance of high-speed vessels varies significantly depending on their hull forms. In this study, three planing hulls that have almost the same displacement and principal dimension are designed and the hydrodynamic characteristics of those hulls are estimated by high-speed model tests. All model ships are deep-V type planing hulls. The bows of no.2 and no.3 model ships are designed to be advantageous for wave-piercing in rough water. No.2 and no.3 model ships have concave and straight forebody cross-sections, respectively. And length-to-beam ratios of no.2 and no.3 models are larger than that of no.1 model. In calm water tests, running attitude and resistance of model ships are measured at various speeds. And motion tests in regular waves are performed to measure the heave and pitch motion responses of the model ships. The required power of no.1 (VPS) model is smallest, but its vertical motion amplitudes in waves are the largest. No.2 (VWC) model shows the smallest motion amplitudes in waves, but needs the greatest power at high speed. The resistance and seakeeping performance of no.3 (VWS) model ship are the middle of three model ships, respectively. And in regular waves, no.1 model ship experiences 'fly over' phenomena around its resonant frequency. Vertical accelerations at specific locations such as F.P., center of gravity of model ships are measured at their resonant frequency. It is necessary to measure accelerations by accelerometers or other devices in model tests for the accurate prediction of vertical accelerations in real ships.